Skip to content

Automated calibration of RANS turbulence models for hypersonic flows using SciML. Achieved 26% RMSE reduction at Mach 14.

License

Notifications You must be signed in to change notification settings

youuww/hypersonic-prt-optimization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hypersonic Turbulent Prandtl Number Optimization

Python SU2 License MPI

Optimization Animation

Automated calibration of RANS turbulence models for hypersonic cold-wall boundary layers using data-driven inverse modeling.


Key Results

Metric Baseline Optimized Improvement
Temperature RMSE 0.387 0.286 -26%
Turbulent Prandtl Number 0.9 0.566 Calibrated

T-U Profile Evolution


The Problem

Standard RANS turbulence models assume a constant turbulent Prandtl number (Pr_t = 0.9). This assumption breaks down for hypersonic flows with cold walls, leading to significant errors in heat flux prediction - critical for thermal protection system design.

The Solution

This project implements an automated calibration pipeline that:

  1. Wraps the SU2 CFD solver in a Python interface
  2. Runs parametric simulations automatically
  3. Computes loss against DNS ground truth
  4. Optimizes Pr_t using Brent's method (SciPy)
┌─────────────────┐     ┌──────────────┐     ┌─────────────────┐
│   SciPy         │────>│  SU2 RANS    │────>│  Loss Function  │
│   Optimizer     │     │  Solver      │     │  (RMSE vs DNS)  │
│  (Brent's)      │<────│  (Mach 14)   │<────│                 │
└─────────────────┘     └──────────────┘     └─────────────────┘

Test Case

Parameter Value
Mach Number 13.6
Wall Temperature Ratio (Tw/Taw) 0.186
Reynolds Number 5×10⁶
Turbulence Model Spalart-Allmaras
Validation Data DNS (Murphy & Agarwal, 2025)

Technologies

  • CFD Solver: SU2 (open-source, MPI-parallel)
  • Optimization: SciPy (Brent's bounded method)
  • Data Processing: Pandas, NumPy
  • Visualization: Matplotlib (AIAA publication style)
  • Environment: Linux/WSL2, Python 3.8+

Quick Start

# Install dependencies
pip install -r requirements.txt

# Run optimization (requires SU2 with MPI)
cd src
python run_optimization.py

Project Structure

├── src/
│   ├── run_optimization.py    # Main optimization loop
│   ├── su2_interface.py       # SU2 wrapper class
│   └── generate_ramp.py       # Mesh generator for future work
├── config/                    # SU2 configuration files
├── data/                      # DNS validation dataset
└── post_processing/           # Visualization scripts

References

  • Murphy, A. R. & Agarwal, R. K. (2025). Application and Evaluation of the Wray-Agarwal Turbulence Model with Compressibility Corrections in SU2 for RANS Hypersonic Flow Prediction. AIAA Aviation Forum.

Author

Matar Hedi
M.Sc. Researcher, Technion | Thermal Engineer, Elbit Systems
LinkedIn


License

MIT

About

Automated calibration of RANS turbulence models for hypersonic flows using SciML. Achieved 26% RMSE reduction at Mach 14.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages