Automated calibration of RANS turbulence models for hypersonic cold-wall boundary layers using data-driven inverse modeling.
| Metric | Baseline | Optimized | Improvement |
|---|---|---|---|
| Temperature RMSE | 0.387 | 0.286 | -26% |
| Turbulent Prandtl Number | 0.9 | 0.566 | Calibrated |
Standard RANS turbulence models assume a constant turbulent Prandtl number (Pr_t = 0.9). This assumption breaks down for hypersonic flows with cold walls, leading to significant errors in heat flux prediction - critical for thermal protection system design.
This project implements an automated calibration pipeline that:
- Wraps the SU2 CFD solver in a Python interface
- Runs parametric simulations automatically
- Computes loss against DNS ground truth
- Optimizes Pr_t using Brent's method (SciPy)
┌─────────────────┐ ┌──────────────┐ ┌─────────────────┐
│ SciPy │────>│ SU2 RANS │────>│ Loss Function │
│ Optimizer │ │ Solver │ │ (RMSE vs DNS) │
│ (Brent's) │<────│ (Mach 14) │<────│ │
└─────────────────┘ └──────────────┘ └─────────────────┘
| Parameter | Value |
|---|---|
| Mach Number | 13.6 |
| Wall Temperature Ratio (Tw/Taw) | 0.186 |
| Reynolds Number | 5×10⁶ |
| Turbulence Model | Spalart-Allmaras |
| Validation Data | DNS (Murphy & Agarwal, 2025) |
- CFD Solver: SU2 (open-source, MPI-parallel)
- Optimization: SciPy (Brent's bounded method)
- Data Processing: Pandas, NumPy
- Visualization: Matplotlib (AIAA publication style)
- Environment: Linux/WSL2, Python 3.8+
# Install dependencies
pip install -r requirements.txt
# Run optimization (requires SU2 with MPI)
cd src
python run_optimization.py├── src/
│ ├── run_optimization.py # Main optimization loop
│ ├── su2_interface.py # SU2 wrapper class
│ └── generate_ramp.py # Mesh generator for future work
├── config/ # SU2 configuration files
├── data/ # DNS validation dataset
└── post_processing/ # Visualization scripts
- Murphy, A. R. & Agarwal, R. K. (2025). Application and Evaluation of the Wray-Agarwal Turbulence Model with Compressibility Corrections in SU2 for RANS Hypersonic Flow Prediction. AIAA Aviation Forum.
Matar Hedi
M.Sc. Researcher, Technion | Thermal Engineer, Elbit Systems
LinkedIn
MIT

