Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 41 additions & 0 deletions configs/Scutoid_Exp_1_BC.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
# For binary mask & instance contour prediction.
# All other configurations are set by default. If you want to add new config options,
# please modify ../connectomics/config/config.py
# 30x8x8 nm in (z,y,x), 1000x4096x4096 voxel
SYSTEM:
NUM_GPUS: 4
NUM_CPUS: 4
MODEL:
ARCHITECTURE: 'unet_residual_3d'
INPUT_SIZE: [32, 256, 256]
OUTPUT_SIZE: [32, 256, 256]
IN_PLANES: 1
OUT_PLANES: 2
LOSS_OPTION: [['WeightedBCE'], ['WeightedBCE']]
LOSS_WEIGHT: [[1.0], [1.0]]
TARGET_OPT: ['0','4-2-1']
WEIGHT_OPT: [['1'],['1']]
DATASET:
IMAGE_NAME: 'Raw_LateralMembranes/vol00.tif'
LABEL_NAME: 'Labelled/vol00.tif'
INPUT_PATH: '/n/pfister_lab2/Lab/vcg_connectomics/LM/Cysts_Dec2020/'
OUTPUT_PATH: 'outputs/Scutoid_Exp_1/'
PAD_SIZE: [16, 128, 128]
SOLVER:
LR_SCHEDULER_NAME: "WarmupMultiStepLR"
BASE_LR: 1e-03
ITERATION_STEP: 1
ITERATION_SAVE: 200
ITERATION_TOTAL: 100000
SAMPLES_PER_BATCH: 4
INFERENCE:
INPUT_SIZE: [32, 256, 256]
OUTPUT_SIZE: [32, 256, 256]
IMAGE_NAME: 'Raw_LaterMembranes/vol01.tif@Raw_LateralMembranes/vol02.tif@Raw_LateralMembranes/vol03.tif@Raw_LateralMembranes/vol04.tif@Raw_LateralMembranes/vol05.tif@Raw_LateralMembranes/vol06.tif@Raw_LateralMembranes/vol07.tif@Raw_LateralMembranes/vol08.tif@Raw_LateralMembranes/vol09.tif@Raw_LateralMembranes/vol10.tif@Raw_LateralMembranes/vol11.tif@Raw_LateralMembranes/vol12.tif@Raw_LateralMembranes/vol13.tif@Raw_LateralMembranes/vol14.tif@Raw_LateralMembranes/vol15.tif@Raw_LateralMembranes/vol16.tif@Raw_LateralMembranes/vol17.tif@Raw_LateralMembranes/vol18.tif@Raw_LateralMembranes/vol19.tif'
OUTPUT_PATH: 'outputs/Scutoid_Exp_1/test'
OUTPUT_NAME: 'result.h5'
PAD_SIZE: [16, 128, 128]
AUG_MODE: 'mean'
AUG_NUM: 4
STRIDE: [16, 128, 128]
SAMPLES_PER_BATCH: 16