This repository contains the code and pretrained models for HiC4D-SPOT, an unsupervised deep-learning framework designed to detect spatiotemporal anomalies in Hi-C data.
Before running any script, configure the necessary parameters in args/args_mega.py based on your experiment.
-
Tested on Python 3.10.14
-
Create the conda environment using the provided
environment.ymlfile:conda env create -f environment.yml conda activate hic4d-spot
-
More info: Conda Documentation
Download and place the datasets in the data directory using the following structure:
| Dataset | Description | GEO Accession | DOI | Local Directory |
|---|---|---|---|---|
| Du | Preimplantation mouse embryos | GSE82185 | https://doi.org/10.1038/nature23263 | data/data_Du/allValidPairs |
| Reed | Human cell line dynamics | GSE201376 | https://doi.org/10.1016/j.celrep.2022.111567 | data/data_Reed/Hi-C |
| Zhang | Cardiomyocyte differentiation | GSE116862 | https://doi.org/10.1038/s41588-019-0479-7 | data/data_Zhang/Hi-C and data/data_Zhang/RNA_seq |
| Cohesin Loss | Auxin-mediated cohesin degradation | GSE104334 | https://doi.org/10.1016/j.cell.2017.09.026 | data/data_Cohesinloss_Rao/Hi-C |
-
Scripts are located in:
codebase/data_{datasetName}/1_data_generation -
Run the appropriate script based on your dataset.
-
Script:
codebase/src/generate_data.py -
Run:
python generate_data.py -id mega
-
Script:
codebase/src/train.py -
Run:
python train.py -id mega
-
Script:
codebase/src/predict.py -
Run:
python predict.py -id mega
-
Output will be saved in the
predictions/directory.
-
Script:
codebase/src/evaluate.py -
Run:
python evaluate.py -id mega
-
Output will be saved inside the
eval/directory within each model’s prediction directory.
If you use HiC4D-SPOT in your research, please cite:
@article{shrestha2025hic4d,
title={HiC4D-SPOT: a spatiotemporal outlier detection tool for Hi-C data},
author={Shrestha, Bishal and Wang, Zheng},
journal={Briefings in Bioinformatics},
volume={26},
number={4},
pages={bbaf341},
year={2025},
publisher={Oxford University Press}
}
For questions, suggestions, or issues, please contact:
- Zheng Wang, PhD
- University of Miami
- Email: zheng.wang@miami.edu
Thank you for using HiC4D-SPOT!
