Skip to content

This repository contains the code and pretrained models for HiC4D-SPOT, a deep-learning framework designed to detect spatiotemporal anomalies in Hi-C data.

Notifications You must be signed in to change notification settings

zwang-bioinformatics/HiC4D-SPOT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HiC4D-SPOT: Spatiotemporal Outlier Detection Tool for Hi-C Data

Architecture

This repository contains the code and pretrained models for HiC4D-SPOT, an unsupervised deep-learning framework designed to detect spatiotemporal anomalies in Hi-C data.


🔧 Setup Instructions

Before running any script, configure the necessary parameters in args/args_mega.py based on your experiment.


📦 Python Environment

  • Tested on Python 3.10.14

  • Create the conda environment using the provided environment.yml file:

    conda env create -f environment.yml
    conda activate hic4d-spot
  • More info: Conda Documentation


📂 Datasets

Download and place the datasets in the data directory using the following structure:

Dataset Description GEO Accession DOI Local Directory
Du Preimplantation mouse embryos GSE82185 https://doi.org/10.1038/nature23263 data/data_Du/allValidPairs
Reed Human cell line dynamics GSE201376 https://doi.org/10.1016/j.celrep.2022.111567 data/data_Reed/Hi-C
Zhang Cardiomyocyte differentiation GSE116862 https://doi.org/10.1038/s41588-019-0479-7 data/data_Zhang/Hi-C and data/data_Zhang/RNA_seq
Cohesin Loss Auxin-mediated cohesin degradation GSE104334 https://doi.org/10.1016/j.cell.2017.09.026 data/data_Cohesinloss_Rao/Hi-C

⚙️ Data Processing

1. Preprocessing

  • Scripts are located in:
    codebase/data_{datasetName}/1_data_generation

  • Run the appropriate script based on your dataset.

2. Spatiotemporal Feature Generation

  • Script: codebase/src/generate_data.py

  • Run:

    python generate_data.py -id mega

🧠 Training HiC4D-SPOT

  • Script: codebase/src/train.py

  • Run:

    python train.py -id mega

🔍 Inference

  • Script: codebase/src/predict.py

  • Run:

    python predict.py -id mega
  • Output will be saved in the predictions/ directory.


📊 Visualization

  • Script: codebase/src/evaluate.py

  • Run:

    python evaluate.py -id mega
  • Output will be saved inside the eval/ directory within each model’s prediction directory.


📖 Citation

If you use HiC4D-SPOT in your research, please cite:

@article{shrestha2025hic4d,
  title={HiC4D-SPOT: a spatiotemporal outlier detection tool for Hi-C data},
  author={Shrestha, Bishal and Wang, Zheng},
  journal={Briefings in Bioinformatics},
  volume={26},
  number={4},
  pages={bbaf341},
  year={2025},
  publisher={Oxford University Press}
}

📬 Contact

For questions, suggestions, or issues, please contact:


Thank you for using HiC4D-SPOT!

About

This repository contains the code and pretrained models for HiC4D-SPOT, a deep-learning framework designed to detect spatiotemporal anomalies in Hi-C data.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published