Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 66 additions & 0 deletions .env.example
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
###############################################
############## LLM API SELECTION ##############
###############################################

# LLM_PROVIDER=openai
# OPEN_AI_LLM_KEY=
# OPEN_AI_LLM_MODEL=gpt-4o

# LLM_PROVIDER=gemini
# GEMINI_API_KEY=
# GEMINI_LLM_MODEL=gemini-2.0-flash-lite

# LLM_PROVIDER=azure
# AZURE_OPENAI_LLM_ENDPOINT=
# AZURE_OPENAI_LLM_KEY=
# AZURE_OPENAI_LLM_MODEL=
# AZURE_OPENAI_LLM_API_VERSION=

# LLM_PROVIDER=ollama
# OLLAMA_LLM_BASE_URL=
# OLLAMA_LLM_MODEL=

# LLM_PROVIDER=huggingface
# HUGGING_FACE_LLM_REPO_ID=
# HUGGING_FACE_LLM_ENDPOINT=
# HUGGING_FACE_LLM_API_TOKEN=

# LLM_PROVIDER=bedrock
# AWS_BEDROCK_LLM_ACCESS_KEY_ID=
# AWS_BEDROCK_LLM_SECRET_ACCESS_KEY=
# AWS_BEDROCK_LLM_REGION=us-west-2
# AWS_BEDROCK_LLM_ENDPOINT_URL=https://bedrock.us-west-2.amazonaws.com
# AWS_BEDROCK_LLM_MODEL=anthropic.claude-3-5-sonnet-20241022-v2:0\

###############################################
########### Embedding API SElECTION ###########
###############################################
# Only used if you are using an LLM that does not natively support embedding (openai or Azure)
# EMBEDDING_ENGINE='openai'
# OPEN_AI_KEY=sk-xxxx
# EMBEDDING_MODEL_PREF='text-embedding-ada-002'

# EMBEDDING_ENGINE='azure'
# AZURE_OPENAI_ENDPOINT=
# AZURE_OPENAI_KEY=
# EMBEDDING_MODEL_PREF='my-embedder-model' # This is the "deployment" on Azure you want to use for embeddings. Not the base model. Valid base model is text-embedding-ada-002

# EMBEDDING_ENGINE='ollama'
# EMBEDDING_BASE_PATH='http://host.docker.internal:11434'
# EMBEDDING_MODEL_PREF='nomic-embed-text:latest'
# EMBEDDING_MODEL_MAX_CHUNK_LENGTH=8192

# EMBEDDING_ENGINE='bedrock'
# AWS_BEDROCK_EMBEDDING_ACCESS_KEY_ID=
# AWS_BEDROCK_EMBEDDING_ACCESS_KEY=
# AWS_BEDROCK_EMBEDDING_REGION=us-west-2
# AWS_BEDROCK_EMBEDDING_MODEL_PREF=amazon.embedding-embedding-ada-002:0

# EMBEDDING_ENGINE='gemini'
# GEMINI_EMBEDDING_API_KEY=
# EMBEDDING_MODEL_PREF='text-embedding-004'

# EMBEDDING_ENGINE='huggingface'
# HUGGING_FACE_EMBEDDING_REPO_ID=
# HUGGING_FACE_EMBEDDING_MODEL=
# HUGGING_FACE_EMBEDDING_API_TOKEN=
182 changes: 168 additions & 14 deletions llm_utils/llm_factory.py
Original file line number Diff line number Diff line change
@@ -1,25 +1,179 @@
# llm_factory.py
import os
from typing import Optional

from dotenv import load_dotenv
from langchain.llms.base import BaseLanguageModel
from langchain_openai import ChatOpenAI
from langchain_aws import ChatBedrockConverse, BedrockEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
from langchain_huggingface import (
ChatHuggingFace,
HuggingFaceEndpoint,
HuggingFaceEndpointEmbeddings,
)
from langchain_ollama import ChatOllama, OllamaEmbeddings
from langchain_openai import (
AzureOpenAIEmbeddings,
ChatOpenAI,
AzureChatOpenAI,
OpenAIEmbeddings,
)
from langchain_community.llms.bedrock import Bedrock

# .env 파일 로딩
load_dotenv()

def get_llm(
model_type: str,
model_name: Optional[str] = None,
openai_api_key: Optional[str] = None,
**kwargs,
) -> BaseLanguageModel:

def get_llm() -> BaseLanguageModel:
"""
주어진 model_type과 model_name 등에 따라 적절한 LLM 객체를 생성/반환한다.
return chat model interface
"""
if model_type == "openai":
return ChatOpenAI(
model=model_name,
api_key=openai_api_key,
**kwargs,
provider = os.getenv("LLM_PROVIDER")

if provider is None:
raise ValueError("LLM_PROVIDER environment variable is not set.")

if provider == "openai":
return get_llm_openai()

elif provider == "azure":
return get_llm_azure()

elif provider == "bedrock":
return get_llm_bedrock()

elif provider == "gemini":
return get_llm_gemini()

elif provider == "ollama":
return get_llm_ollama()

elif provider == "huggingface":
return get_llm_huggingface()

else:
raise ValueError(f"Invalid LLM API Provider: {provider}")


def get_llm_openai() -> BaseLanguageModel:
return ChatOpenAI(
model=os.getenv("OPEN_MODEL_PREF", "gpt-4o"),
api_key=os.getenv("OPEN_AI_KEY"),
)


def get_llm_azure() -> BaseLanguageModel:
return AzureChatOpenAI(
api_key=os.getenv("AZURE_OPENAI_LLM_KEY"),
azure_endpoint=os.getenv("AZURE_OPENAI_LLM_ENDPOINT"),
azure_deployment=os.getenv("AZURE_OPENAI_LLM_MODEL"), # Deployment name
api_version=os.getenv("AZURE_OPENAI_LLM_API_VERSION", "2023-07-01-preview"),
)


def get_llm_bedrock() -> BaseLanguageModel:
return ChatBedrockConverse(
model=os.getenv("AWS_BEDROCK_LLM_MODEL"),
aws_access_key_id=os.getenv("AWS_BEDROCK_LLM_ACCESS_KEY_ID"),
aws_secret_access_key=os.getenv("AWS_BEDROCK_LLM_SECRET_ACCESS_KEY"),
region_name=os.getenv("AWS_BEDROCK_LLM_REGION", "us-east-1"),
)


def get_llm_gemini() -> BaseLanguageModel:
return ChatGoogleGenerativeAI(model=os.getenv("GEMINI_LLM_MODEL"))


def get_llm_ollama() -> BaseLanguageModel:
base_url = os.getenv("OLLAMA_LLM_BASE_URL")
if base_url:
return ChatOllama(base_url=base_url, model=os.getenv("OLLAMA_LLM_MODEL"))
else:
return ChatOllama(model=os.getenv("OLLAMA_LLM_MODEL"))


def get_llm_huggingface() -> BaseLanguageModel:
return ChatHuggingFace(
llm=HuggingFaceEndpoint(
model=os.getenv("HUGGING_FACE_LLM_MODEL"),
repo_id=os.getenv("HUGGING_FACE_LLM_REPO_ID"),
task="text-generation",
endpoint_url=os.getenv("HUGGING_FACE_LLM_ENDPOINT"),
huggingfacehub_api_token=os.getenv("HUGGING_FACE_LLM_API_TOKEN"),
)
)


def get_embeddings() -> Optional[BaseLanguageModel]:
"""
return embedding model interface
"""
provider = os.getenv("EMBEDDING_PROVIDER")

if provider is None:
raise ValueError("EMBEDDING_PROVIDER environment variable is not set.")

if provider == "openai":
return get_embeddings_openai()

elif provider == "bedrock":
return get_embeddings_bedrock()

elif provider == "azure":
return get_embeddings_azure()

elif provider == "gemini":
return get_embeddings_gemini()

elif provider == "ollama":
return get_embeddings_ollama()

else:
raise ValueError(f"지원하지 않는 model_type: {model_type}")
raise ValueError(f"Invalid Embedding API Provider: {provider}")


def get_embeddings_openai() -> BaseLanguageModel:
return OpenAIEmbeddings(
model=os.getenv("OPEN_AI_EMBEDDING_MODEL"),
openai_api_key=os.getenv("OPEN_AI_EMBEDDING_KEY"),
)


def get_embeddings_azure() -> BaseLanguageModel:
return AzureOpenAIEmbeddings(
api_key=os.getenv("AZURE_OPENAI_EMBEDDING_KEY"),
azure_endpoint=os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT"),
azure_deployment=os.getenv("AZURE_OPENAI_EMBEDDING_MODEL"),
api_version=os.getenv("AZURE_OPENAI_EMBEDDING_API_VERSION"),
)


def get_embeddings_bedrock() -> BaseLanguageModel:
return BedrockEmbeddings(
model_id=os.getenv("AWS_BEDROCK_EMBEDDING_MODEL"),
aws_access_key_id=os.getenv("AWS_BEDROCK_EMBEDDING_ACCESS_KEY_ID"),
aws_secret_access_key=os.getenv("AWS_BEDROCK_EMBEDDING_SECRET_ACCESS_KEY"),
region_name=os.getenv("AWS_BEDROCK_EMBEDDING_REGION", "us-east-1"),
)


def get_embeddings_gemini() -> BaseLanguageModel:
return GoogleGenerativeAIEmbeddings(
model=os.getenv("GEMINI_EMBEDDING_MODEL"),
api_key=os.getenv("GEMINI_EMBEDDING_KEY"),
)


def get_embeddings_ollama() -> BaseLanguageModel:
return OllamaEmbeddings(
model=os.getenv("OLLAMA_EMBEDDING_MODEL"),
base_url=os.getenv("OLLAMA_EMBEDDING_BASE_URL"),
)


def get_embeddings_huggingface() -> BaseLanguageModel:
return HuggingFaceEndpointEmbeddings(
model=os.getenv("HUGGING_FACE_EMBEDDING_MODEL"),
repo_id=os.getenv("HUGGING_FACE_EMBEDDING_REPO_ID"),
huggingfacehub_api_token=os.getenv("HUGGING_FACE_EMBEDDING_API_TOKEN"),
)
Loading