Releases: KevinMusgrave/pytorch-adapt
Releases · KevinMusgrave/pytorch-adapt
v0.0.83
v0.0.82
Features
domains can now be passed into CLossHook:
CLossHook(domains=["src", "target"])v0.0.81
Features
- Added a new base validator
SimpleLossValidator - Added
BNMValidator
v0.0.80
Features
- Added pretrained models for DomainNet126
- Added
transforms.classification.get_timm_transform
Bug fixes
- Fixed bug where
map_locationwasn't being used in a useful way when downloading pretrained models. - Fixed some formatting issues in the documentation.
v0.0.79
Features
- Added
APValidator - Added
adapters.MultiLabelClassifier - Added
hooks.MultiLabelClassifierHook - Added
frameworks.ignite.IgniteMultiLabelClassification - Added
models.pretrained_scores
v0.0.78
Features
- Added
VOCMultiLabeldataset - Added
Clipart1kMultiLabeldataset - Added
get_voc_multilabeldataset getter
Breaking changes
- Moved
get_mnist_transform,get_resnet_transform, andGrayscaleToRGBto a newtransformsmodule
v0.0.77
Features
Made DomainNet126 downloadable:
from pytorch_adapt.datasets import get_domainnet126
datasets = get_domainnet126(["clipart"], ["real"], folder=".", download=True)v0.0.76
Code change
Simplified code in frameworks.ignite.checkpoint_utils by using the latest version of pytorch-ignite.
v0.0.75
Features
Removed memory-inefficient operation from MCCLoss
v0.0.74
Features
- Pass
kwargsdown from pretrained model getters toload_state_dict_from_url. For example, this allowsmap_locationto be specified:
from pytorch_adapt.models import office31C
model = office31C(domain="dslr", pretrained=True, map_location=torch.device("cpu"))