-
Notifications
You must be signed in to change notification settings - Fork 6
Initial implementation of row/column blocked MPIMatrixMult #136
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 14 commits
Commits
Show all changes
30 commits
Select commit
Hold shift + click to select a range
7fcc2cf
Added impl, test and example
astroC86 6a9d382
Merge branch 'PyLops:main' into astroC86-SUMMA
astroC86 f72fce6
Addressed some comments
astroC86 c607283
Example formating
astroC86 de1a173
Rename MatrixMultiply file to MatrixMult
astroC86 82b7e34
Addressed more issues
astroC86 9e1a49f
Addressed comments
astroC86 22cde7b
Addressing changes
astroC86 740030d
Minor cosmetic changes
astroC86 a88dec3
More minor changes
astroC86 66f1770
Example shape dims general
astroC86 7ac593d
Added comments to example
astroC86 8a56096
I donot know why I thought I needed to batch
astroC86 42452a1
Inital docstring for matrix mult
astroC86 a110ff8
minor: cleanup of docstrings and updated example
mrava87 bd9ad37
minor: fix mistake in plot_matrixmult
mrava87 18db078
removed now useless bcast and fixed mask in test
astroC86 ef3c283
changed tests
astroC86 4e39068
Fixed tests and moved checks to root
astroC86 ed3b585
Fix internal check for MPIMatrixMult
astroC86 7b76f96
Fixed Notation
astroC86 3e9659e
Skipping test if number of procs is not square for now
astroC86 dd9b43c
Merge branch 'main' into astroC86-SUMMA
astroC86 a85e75a
Fixed Doc error
astroC86 b7e6702
Renamed layer and group as to row and col respectively
astroC86 ae5661b
minor: small improvements to text
mrava87 053e52d
minor: fix flake8
mrava87 9aedd7c
MatrixMul works with non-square prcs by creating square subcommunicator
astroC86 4c662d6
minor: stylistic fixes
mrava87 0c34b78
minor: fix flake8
mrava87 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,172 @@ | ||
| """ | ||
| Distributed Matrix Multiplication | ||
| ================================= | ||
| This example shows how to use the :py:class:`pylops_mpi.basicoperators.MatrixMult.MPIMatrixMult`. | ||
| This class provides a way to distribute arrays across multiple processes in | ||
| a parallel computing environment. | ||
| """ | ||
| from matplotlib import pyplot as plt | ||
| import math | ||
| import numpy as np | ||
| from mpi4py import MPI | ||
|
|
||
| from pylops_mpi import DistributedArray, Partition | ||
| from pylops_mpi.basicoperators.MatrixMult import MPIMatrixMult | ||
|
|
||
| plt.close("all") | ||
| ############################################################################### | ||
| # We set the seed such that all processes initially start out with the same initial matrix. | ||
| # Ideally this data would be loaded in a manner appropriate to the use-case. | ||
| np.random.seed(42) | ||
|
|
||
| # MPI parameters | ||
| comm = MPI.COMM_WORLD | ||
| rank = comm.Get_rank() # rank of current process | ||
| size = comm.Get_size() # number of processes | ||
|
|
||
| p_prime = int(math.ceil(math.sqrt(size))) | ||
| C = int(math.ceil(size / p_prime)) | ||
|
|
||
| if (p_prime * C) != size: | ||
| print("No. of procs has to be a square number") | ||
| exit(-1) | ||
|
|
||
| # matrix dims | ||
| M, K, N = 4, 4, 4 | ||
| A = np.random.rand(M * K).astype(dtype=np.float32).reshape(M, K) | ||
| X = np.random.rand(K * N).astype(dtype=np.float32).reshape(K, N) | ||
| ################################################################################ | ||
| #Process Grid Organization | ||
| #************************* | ||
| # | ||
| #The processes are arranged in a :math:`\sqrt{P} \times \sqrt{P}` grid, where :math:`P` is the total number of processes. | ||
| # | ||
| #Define | ||
| # | ||
| #.. math:: | ||
| # P' = \bigl \lceil \sqrt{P} \bigr \rceil | ||
| # | ||
| #and the replication factor | ||
| # | ||
| #.. math:: | ||
| # C = \bigl\lceil \tfrac{P}{P'} \bigr\rceil. | ||
| # | ||
| #Each process is assigned a pair of coordinates :math:`(g, l)` within this grid: | ||
| # | ||
| #.. math:: | ||
| # g = \mathrm{rank} \bmod P', | ||
| # \quad | ||
| # l = \left\lfloor \frac{\mathrm{rank}}{P'} \right\rfloor. | ||
| # | ||
| #For example, when :math:`P = 4` we have :math:`P' = 2`, giving a 2×2 layout: | ||
| # | ||
| #.. raw:: html | ||
| # | ||
| # <div style="text-align: center; font-family: monospace; white-space: pre;"> | ||
| # ┌────────────┬────────────┐ | ||
| # │ Rank 0 │ Rank 1 │ | ||
| # │ (g=0, l=0) │ (g=1, l=0) │ | ||
| # ├────────────┼────────────┤ | ||
| # │ Rank 2 │ Rank 3 │ | ||
| # │ (g=0, l=1) │ (g=1, l=1) │ | ||
| # └────────────┴────────────┘ | ||
| # </div> | ||
|
|
||
| my_group = rank % p_prime | ||
| my_layer = rank // p_prime | ||
|
|
||
| # Create the sub‐communicators | ||
| layer_comm = comm.Split(color=my_layer, key=my_group) # all procs in same layer | ||
| group_comm = comm.Split(color=my_group, key=my_layer) # all procs in same group | ||
|
|
||
| blk_rows = int(math.ceil(M / p_prime)) | ||
| blk_cols = int(math.ceil(N / p_prime)) | ||
|
|
||
| rs = my_group * blk_rows | ||
| re = min(M, rs + blk_rows) | ||
| my_own_rows = re - rs | ||
|
|
||
| cs = my_layer * blk_cols | ||
| ce = min(N, cs + blk_cols) | ||
| my_own_cols = ce - cs | ||
|
|
||
| ################################################################################ | ||
| #Each rank will end up with: | ||
| # - :math:`A_{p} \in \mathbb{R}^{\text{my_own_rows}\times K}` | ||
| # - :math:`X_{p} \in \mathbb{R}^{K\times \text{my_own_cols}}` | ||
| #as follows: | ||
| A_p, X_p = A[rs:re, :].copy(), X[:, cs:ce].copy() | ||
|
|
||
| ################################################################################ | ||
| #.. raw:: html | ||
| # | ||
| # <div style="text-align: left; font-family: monospace; white-space: pre;"> | ||
| # <b>Matrix A (4 x 4):</b> | ||
| # ┌─────────────────┐ | ||
| # │ a11 a12 a13 a14 │ <- Rows 0–1 (Group 0) | ||
| # │ a21 a22 a23 a24 │ | ||
| # ├─────────────────┤ | ||
| # │ a41 a42 a43 a44 │ <- Rows 2–3 (Group 1) | ||
| # │ a51 a52 a53 a54 │ | ||
| # └─────────────────┘ | ||
| # </div> | ||
| # | ||
| #.. raw:: html | ||
| # | ||
| # <div style="text-align: left; font-family: monospace; white-space: pre;"> | ||
| # <b>Matrix B (4 x 4):</b> | ||
| # ┌─────────┬─────────┐ | ||
| # │ b11 b12 │ b13 b14 │ <- Cols 0–1 (Layer 0), Cols 2–3 (Layer 1) | ||
| # │ b21 b22 │ b23 b24 │ | ||
| # │ b31 b32 │ b33 b34 │ | ||
| # │ b41 b42 │ b43 b44 │ | ||
| # └─────────┴─────────┘ | ||
| # | ||
| # </div> | ||
| # | ||
|
|
||
| ################################################################################ | ||
| #Forward Operation | ||
| #***************** | ||
| #To perform our distributed matrix-matrix multiplication :math:`Y = \text{Aop} \times X` we need to create our distributed operator :math:`\text{Aop}` and distributed operand :math:`X` from :math:`A_p` and | ||
| #:math:`X_p` respectively | ||
| Aop = MPIMatrixMult(A_p, N, dtype="float32") | ||
| ################################################################################ | ||
| # While as well passing the appropriate values. | ||
| col_lens = comm.allgather(my_own_cols) | ||
| total_cols = np.sum(col_lens) | ||
| x = DistributedArray(global_shape=K * total_cols, | ||
| local_shapes=[K * col_len for col_len in col_lens], | ||
| partition=Partition.SCATTER, | ||
| mask=[i // p_prime for i in range(comm.Get_size())], | ||
| base_comm=comm, | ||
| dtype="float32") | ||
| x[:] = X_p.flatten() | ||
| ################################################################################ | ||
| #When we perform the matrix-matrix multiplication we shall then obtain a distributed :math:`Y` in the same way our :math:`X` was distributed. | ||
| y = Aop @ x | ||
| ############################################################################### | ||
| #Adjoint Operation | ||
| #***************** | ||
| # In a similar fashion we then perform the Adjoint :math:`Xadj = A^H * Y` | ||
| xadj = Aop.H @ y | ||
| ############################################################################### | ||
| #Here we verify the result against the equivalent serial version of the operation. Each rank checks that it has computed the correct values for it partition. | ||
| y_loc = A @ X | ||
| xadj_loc = (A.T.dot(y_loc.conj())).conj() | ||
|
|
||
| expected_y_loc = y_loc[:, cs:ce].flatten().astype(np.float32) | ||
| expected_xadj_loc = xadj_loc[:, cs:ce].flatten().astype(np.float32) | ||
|
|
||
| if not np.allclose(y.local_array, expected_y_loc, rtol=1e-6): | ||
| print(f"RANK {rank}: FORWARD VERIFICATION FAILED") | ||
| print(f'{rank} local: {y.local_array}, expected: {y_loc[:, cs:ce]}') | ||
| else: | ||
| print(f"RANK {rank}: FORWARD VERIFICATION PASSED") | ||
|
|
||
| if not np.allclose(xadj.local_array, expected_xadj_loc, rtol=1e-6): | ||
| print(f"RANK {rank}: ADJOINT VERIFICATION FAILED") | ||
| print(f'{rank} local: {xadj.local_array}, expected: {xadj_loc[:, cs:ce]}') | ||
| else: | ||
| print(f"RANK {rank}: ADJOINT VERIFICATION PASSED") | ||
|
|
||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,206 @@ | ||
| import numpy as np | ||
| import math | ||
| from mpi4py import MPI | ||
| from pylops.utils.backend import get_module | ||
| from pylops.utils.typing import DTypeLike, NDArray | ||
|
|
||
| from pylops_mpi import ( | ||
| DistributedArray, | ||
| MPILinearOperator, | ||
| Partition | ||
| ) | ||
|
|
||
|
|
||
| class MPIMatrixMult(MPILinearOperator): | ||
| r""" | ||
| Distributed Matrix-Matrix multiplication | ||
| Implements a distributed matrix-matrix multiplication | ||
|
|
||
| Parameters | ||
| ---------- | ||
| A : :obj:`numpy.ndarray` | ||
| Local block of the matrix multiplication operator of shape ``(M_loc, K)`` | ||
| where ``M_loc`` is the number of rows stored on this MPI rank and | ||
| ``K`` is the global number of columns. | ||
| N : :obj:`int` | ||
| Global leading dimension of the operand matrix (number of columns). | ||
| saveAt : :obj:`bool`, optional | ||
| Save ``A`` and ``A.H`` to speed up the computation of adjoint | ||
| (``True``) or create ``A.H`` on-the-fly (``False``) | ||
| Note that ``saveAt=True`` will double the amount of required memory. | ||
| The default is ``False``. | ||
| base_comm : :obj:`mpi4py.MPI.Comm`, optional | ||
| MPI Base Communicator. Defaults to ``mpi4py.MPI.COMM_WORLD``. | ||
| dtype : :obj:`str`, optional | ||
| Type of elements in input array. | ||
|
|
||
| Attributes | ||
| ---------- | ||
| shape : :obj:`tuple` | ||
| Operator shape | ||
|
|
||
| Raises | ||
| ------ | ||
| Exception | ||
| If the operator is created without a square number of mpi ranks. | ||
| ValueError | ||
| If input vector does not have the correct partition type. | ||
|
|
||
| Notes | ||
| ----- | ||
| This implementation uses a 1D block distribution of the operand matrix and | ||
| operator replicated across the processes math:`P` by a factor equivalent | ||
| to math:`\sqrt{P}` across a square process grid ( math:`\sqrt{P}\times\sqrt{P}`). | ||
|
|
||
| The operator implements a distributed matrix-matrix multiplication where: | ||
|
|
||
| - The matrix ``A`` is distributed across MPI processes in a block-row fashion | ||
| - Each process holds a local block of ``A`` with shape ``(M_loc, K)`` | ||
| - The operand matrix ``X`` is distributed in a block-column fashion | ||
| - Communication is minimized by using a 2D process grid layout | ||
|
|
||
| The forward operation computes :math:`Y = A \cdot X` where: | ||
|
|
||
| - :math:`A` is the distributed matrix operator of shape ``(M, K)`` | ||
| - :math:`X` is the distributed operand matrix of shape ``(K, N)`` | ||
| - :math:`Y` is the resulting distributed matrix of shape ``(M, N)`` | ||
|
|
||
| The adjoint operation computes :math:`Y = A^H \cdot X` where :math:`A^H` | ||
| is the conjugate transpose of :math:`A`. | ||
|
|
||
| Steps for the Forward Operation (:math:`Y = A \cdot X`) | ||
| ---------------------------------------- | ||
| 1. **Input Preparation**: The input vector ``x`` (flattened from matrix ``X`` | ||
| of shape ``(K, N)``) is reshaped to ``(K, N_local)`` where ``N_local`` | ||
| is the number of columns assigned to the current process. | ||
|
|
||
| 2. **Data Broadcasting**: Within each layer (processes with same ``layer_id``), | ||
| the operand data is broadcast from the process whose ``group_id`` matches | ||
| the ``layer_id``. This ensures all processes in a layer have access to | ||
| the same operand columns. | ||
|
|
||
| 3. **Local Computation**: Each process computes ``A_local @ X_local`` where: | ||
| - ``A_local`` is the local block of matrix ``A`` (shape ``M_local × K``) | ||
| - ``X_local`` is the broadcasted operand (shape ``K × N_local``) | ||
|
|
||
| 4. **Layer Gather**: Results from all processes in each layer are gathered | ||
| using ``allgather`` to reconstruct the full result matrix vertically. | ||
|
|
||
|
|
||
| Steps for the Adjoint Operation (:math:`Y = A^H \cdot X`) | ||
| ------------------------------------------- | ||
| The adjoint operation performs the conjugate transpose multiplication: | ||
|
|
||
| 1. **Input Reshaping**: The input vector ``x`` is reshaped to ``(M, N_local)`` | ||
| representing the local columns of the input matrix. | ||
|
|
||
| 2. **Local Adjoint Computation**: | ||
| Each process computes ``A_local.H @ X_tile`` | ||
| where ``A_local.H`` is either: | ||
| - Pre-computed ``At`` (if ``saveAt=True``) | ||
| - Computed on-the-fly as ``A.T.conj()`` (if ``saveAt=False``) | ||
| Each process multiplies its transposed local ``A`` block ``A_local^H`` (shape ``K × M_block``) | ||
| with the extracted ``X_tile`` (shape ``M_block × N_local``), | ||
| producing a partial result of shape ``(K, N_local)``. | ||
| This computes the local contribution of columns of ``A^H`` to the final result. | ||
|
|
||
| 3. **Layer Reduction**: Since the full result ``Y = A^H \cdot X`` is the | ||
| sum of contributions from all column blocks of ``A^H``, processes in the | ||
| same layer perform an ``allreduce`` sum to combine their partial results. | ||
| This gives the complete ``(K, N_local)`` result for their assigned columns. | ||
| """ | ||
| def __init__( | ||
| self, | ||
| A: NDArray, | ||
| N: int, | ||
| saveAt: bool = False, | ||
| base_comm: MPI.Comm = MPI.COMM_WORLD, | ||
| dtype: DTypeLike = "float64", | ||
| ) -> None: | ||
| rank = base_comm.Get_rank() | ||
| size = base_comm.Get_size() | ||
|
|
||
| # Determine grid dimensions (P_prime × C) such that P_prime * C ≥ size | ||
| self._P_prime = int(math.ceil(math.sqrt(size))) | ||
| self._C = int(math.ceil(size / self._P_prime)) | ||
| if self._P_prime * self._C != size: | ||
| raise Exception("Number of Procs must be a square number") | ||
|
|
||
| # Compute this process's group and layer indices | ||
| self._group_id = rank % self._P_prime | ||
| self._layer_id = rank // self._P_prime | ||
|
|
||
| # Split communicators by layer (rows) and by group (columns) | ||
| self.base_comm = base_comm | ||
| self._layer_comm = base_comm.Split(color=self._layer_id, key=self._group_id) | ||
| self._group_comm = base_comm.Split(color=self._group_id, key=self._layer_id) | ||
|
|
||
| self.A = A.astype(np.dtype(dtype)) | ||
| if saveAt: self.At = A.T.conj() | ||
|
|
||
| self.M = self._layer_comm.allreduce(self.A.shape[0], op=MPI.SUM) | ||
| self.K = A.shape[1] | ||
| self.N = N | ||
|
|
||
| block_cols = int(math.ceil(self.N / self._P_prime)) | ||
| blk_rows = int(math.ceil(self.M / self._P_prime)) | ||
|
|
||
| self._row_start = self._group_id * blk_rows | ||
| self._row_end = min(self.M, self._row_start + blk_rows) | ||
|
|
||
| self._col_start = self._layer_id * block_cols | ||
| self._col_end = min(self.N, self._col_start + block_cols) | ||
|
|
||
| self._local_ncols = self._col_end - self._col_start | ||
| self._rank_col_lens = self.base_comm.allgather(self._local_ncols) | ||
| total_ncols = np.sum(self._rank_col_lens) | ||
|
|
||
| self.dims = (self.K, total_ncols) | ||
| self.dimsd = (self.M, total_ncols) | ||
| shape = (int(np.prod(self.dimsd)), int(np.prod(self.dims))) | ||
| super().__init__(shape=shape, dtype=np.dtype(dtype), base_comm=base_comm) | ||
|
|
||
| def _matvec(self, x: DistributedArray) -> DistributedArray: | ||
| ncp = get_module(x.engine) | ||
| if x.partition != Partition.SCATTER: | ||
| raise ValueError(f"x should have partition={Partition.SCATTER} Got {x.partition} instead...") | ||
|
|
||
| y = DistributedArray(global_shape=(self.M * self.dimsd[1]), | ||
| local_shapes=[(self.M * c) for c in self._rank_col_lens], | ||
| mask=x.mask, | ||
| partition=Partition.SCATTER, | ||
| dtype=self.dtype) | ||
|
|
||
| my_own_cols = self._rank_col_lens[self.rank] | ||
| x_arr = x.local_array.reshape((self.dims[0], my_own_cols)) | ||
| x_arr = x_arr.astype(self.dtype) | ||
|
|
||
| X_local = self._layer_comm.bcast(x_arr if self._group_id == self._layer_id else None, root=self._layer_id) | ||
| Y_local = ncp.vstack( | ||
| self._layer_comm.allgather( | ||
| ncp.matmul(self.A, X_local) | ||
| ) | ||
| ) | ||
| y[:] = Y_local.flatten() | ||
| return y | ||
|
|
||
| def _rmatvec(self, x: DistributedArray) -> DistributedArray: | ||
| ncp = get_module(x.engine) | ||
| if x.partition != Partition.SCATTER: | ||
| raise ValueError(f"x should have partition={Partition.SCATTER}. Got {x.partition} instead.") | ||
|
|
||
| y = DistributedArray( | ||
| global_shape=(self.K * self.dimsd[1]), | ||
| local_shapes=[self.K * c for c in self._rank_col_lens], | ||
| mask=x.mask, | ||
| partition=Partition.SCATTER, | ||
| dtype=self.dtype, | ||
| ) | ||
|
|
||
| x_arr = x.local_array.reshape((self.M, self._local_ncols)).astype(self.dtype) | ||
| X_tile = x_arr[self._row_start:self._row_end, :] | ||
| A_local = self.At if hasattr(self, "At") else self.A.T.conj() | ||
| Y_local = ncp.matmul(A_local, X_tile) | ||
| y_layer = self._layer_comm.allreduce(Y_local, op=MPI.SUM) | ||
| y[:] = y_layer.flatten() | ||
| return y |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.