Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
190 changes: 190 additions & 0 deletions tests/test_kaggle.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,190 @@
"""Tests for Kaggle integration module."""

import pytest
from toon.kaggle import (
is_kaggle_slug,
csv_to_records,
parse_croissant,
croissant_to_summary,
find_best_csv,
)
from pathlib import Path
import tempfile


class TestIsKaggleSlug:
"""Tests for is_kaggle_slug function."""

def test_valid_slug(self):
"""Test valid Kaggle slugs."""
assert is_kaggle_slug("username/dataset-name") is True
assert is_kaggle_slug("user123/my-dataset") is True
assert is_kaggle_slug("org-name/dataset_v2") is True

def test_invalid_slug(self):
"""Test invalid Kaggle slugs."""
assert is_kaggle_slug("not-a-slug") is False
assert is_kaggle_slug("username/dataset/extra") is False
assert is_kaggle_slug("") is False
assert is_kaggle_slug("/dataset") is False


class TestCsvToRecords:
"""Tests for csv_to_records function."""

def test_basic_csv(self):
"""Test basic CSV conversion."""
csv_data = "name,age,city\nAlice,30,NYC\nBob,25,LA"
result = csv_to_records(csv_data)

assert len(result) == 2
assert result[0] == {"name": "Alice", "age": "30", "city": "NYC"}
assert result[1] == {"name": "Bob", "age": "25", "city": "LA"}

def test_empty_csv(self):
"""Test empty CSV (headers only)."""
csv_data = "name,age\n"
result = csv_to_records(csv_data)
assert result == []

def test_csv_with_quotes(self):
"""Test CSV with quoted fields."""
csv_data = 'name,description\nAlice,"Hello, World"\nBob,"Line1\nLine2"'
result = csv_to_records(csv_data)

assert len(result) == 2
assert result[0]["description"] == "Hello, World"


class TestParseCroissant:
"""Tests for parse_croissant function."""

def test_basic_metadata(self):
"""Test parsing basic Croissant metadata."""
metadata = {
"name": "Test Dataset",
"description": "A test dataset",
"distribution": [
{
"name": "data.csv",
"encodingFormat": "text/csv",
"contentUrl": "https://example.com/data.csv",
}
],
"recordSet": [
{
"name": "data.csv",
"field": [
{"name": "id", "dataType": ["sc:Integer"]},
{"name": "value", "dataType": ["sc:Float"]},
],
}
],
}

result = parse_croissant(metadata)

assert result["name"] == "Test Dataset"
assert result["description"] == "A test dataset"
assert len(result["files"]) == 1
assert result["files"][0]["name"] == "data.csv"
assert len(result["schema"]["data.csv"]) == 2
assert result["schema"]["data.csv"][0]["name"] == "id"
assert result["schema"]["data.csv"][0]["type"] == "Integer"

def test_kaggle_url_extraction(self):
"""Test Kaggle slug extraction from URL."""
metadata = {
"name": "Kaggle Dataset",
"distribution": [
{
"name": "archive.zip",
"contentUrl": "https://www.kaggle.com/api/v1/datasets/download/user/dataset?version=1",
}
],
"recordSet": [],
}

result = parse_croissant(metadata)
assert result["kaggle_slug"] == "user/dataset"

def test_empty_metadata(self):
"""Test parsing empty metadata."""
result = parse_croissant({})

assert result["name"] == "Unknown"
assert result["description"] == ""
assert result["files"] == []
assert result["schema"] == {}


class TestCroissantToSummary:
"""Tests for croissant_to_summary function."""

def test_summary_output(self):
"""Test summary string generation."""
info = {
"name": "Air Quality Dataset",
"schema": {
"data.csv": [
{"name": "Date", "type": "Date"},
{"name": "AQI", "type": "Float"},
]
},
"kaggle_slug": "user/air-quality",
}

result = croissant_to_summary(info)

assert "# Dataset: Air Quality Dataset" in result
assert "Date:Date" in result
assert "AQI:Float" in result
assert "toon user/air-quality --kaggle" in result


class TestFindBestCsv:
"""Tests for find_best_csv function."""

def test_finds_csv(self):
"""Test finding CSV in file list."""
with tempfile.TemporaryDirectory() as tmpdir:
# Create test files
csv1 = Path(tmpdir) / "data.csv"
csv2 = Path(tmpdir) / "all_data.csv"
txt = Path(tmpdir) / "readme.txt"

csv1.write_text("a,b\n1,2")
csv2.write_text("a,b,c\n1,2,3\n4,5,6") # Larger
txt.write_text("readme")

files = [csv1, csv2, txt]
result = find_best_csv(files)

# Should prefer "all_data.csv" due to "all" in name
assert result == csv2

def test_no_csv(self):
"""Test when no CSV files exist."""
with tempfile.TemporaryDirectory() as tmpdir:
txt = Path(tmpdir) / "readme.txt"
txt.write_text("readme")

result = find_best_csv([txt])
assert result is None

def test_prefers_main_patterns(self):
"""Test preference for files with main/full/combined in name."""
with tempfile.TemporaryDirectory() as tmpdir:
# Use "big" instead of "small" - "small" contains "all"!
big = Path(tmpdir) / "big.csv"
combined = Path(tmpdir) / "combined.csv"

# Make big.csv actually larger in bytes
big.write_text("a,b\n" + "1,2\n" * 100)
combined.write_text("a,b\n1,2")

files = [big, combined]
result = find_best_csv(files)

# Should prefer "combined" despite being smaller
assert result == combined
32 changes: 32 additions & 0 deletions toon/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,32 @@ def decode_to_pydantic(*args, **kwargs):
def generate_structure_from_pydantic(*args, **kwargs):
raise ImportError("generate_structure_from_pydantic requires pydantic to be installed. Please install pydantic to use this feature.")

# Kaggle integration (optional - requires kaggle installation)
try:
from .kaggle import (
download_dataset,
find_best_csv,
csv_to_records,
parse_croissant,
croissant_to_summary,
is_kaggle_slug,
)
_KAGGLE_AVAILABLE = True
except ImportError:
_KAGGLE_AVAILABLE = False
def download_dataset(*args, **kwargs):
raise ImportError("download_dataset requires kaggle to be installed. Please install kaggle to use this feature.")
def find_best_csv(*args, **kwargs):
raise ImportError("find_best_csv requires kaggle to be installed. Please install kaggle to use this feature.")
def csv_to_records(*args, **kwargs):
raise ImportError("csv_to_records requires kaggle to be installed. Please install kaggle to use this feature.")
def parse_croissant(*args, **kwargs):
raise ImportError("parse_croissant requires kaggle to be installed. Please install kaggle to use this feature.")
def croissant_to_summary(*args, **kwargs):
raise ImportError("croissant_to_summary requires kaggle to be installed. Please install kaggle to use this feature.")
def is_kaggle_slug(*args, **kwargs):
raise ImportError("is_kaggle_slug requires kaggle to be installed. Please install kaggle to use this feature.")

__version__ = '1.0.0'
__all__ = [
'encode',
Expand All @@ -31,6 +57,12 @@ def generate_structure_from_pydantic(*args, **kwargs):
'encode_pydantic',
'decode_to_pydantic',
'generate_structure_from_pydantic',
'download_dataset',
'find_best_csv',
'csv_to_records',
'parse_croissant',
'croissant_to_summary',
'is_kaggle_slug',
'COMMA',
'TAB',
'PIPE',
Expand Down
Loading