Skip to content
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -245,6 +245,22 @@ export class BedrockRuntimeServiceExtension implements ServiceExtension {
if (requestBody.top_p !== undefined) {
spanAttributes[AwsSpanProcessingUtil.GEN_AI_REQUEST_TOP_P] = requestBody.top_p;
}
} else if (modelId.includes('cohere.command-r')) {
if (requestBody.max_tokens !== undefined) {
spanAttributes[AwsSpanProcessingUtil.GEN_AI_REQUEST_MAX_TOKENS] = requestBody.max_tokens;
}
if (requestBody.temperature !== undefined) {
spanAttributes[AwsSpanProcessingUtil.GEN_AI_REQUEST_TEMPERATURE] = requestBody.temperature;
}
if (requestBody.p !== undefined) {
spanAttributes[AwsSpanProcessingUtil.GEN_AI_REQUEST_TOP_P] = requestBody.p;
}
if (requestBody.message !== undefined) {
// NOTE: We approximate the token count since this value is not directly available in the body
// According to Bedrock docs they use (total_chars / 6) to approximate token count for pricing.
// https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-prepare.html
spanAttributes[AwsSpanProcessingUtil.GEN_AI_USAGE_INPUT_TOKENS] = Math.ceil(requestBody.message.length / 6);
}
} else if (modelId.includes('cohere.command')) {
if (requestBody.max_tokens !== undefined) {
spanAttributes[AwsSpanProcessingUtil.GEN_AI_REQUEST_MAX_TOKENS] = requestBody.max_tokens;
Expand All @@ -255,6 +271,9 @@ export class BedrockRuntimeServiceExtension implements ServiceExtension {
if (requestBody.p !== undefined) {
spanAttributes[AwsSpanProcessingUtil.GEN_AI_REQUEST_TOP_P] = requestBody.p;
}
if (requestBody.prompt !== undefined) {
spanAttributes[AwsSpanProcessingUtil.GEN_AI_USAGE_INPUT_TOKENS] = Math.ceil(requestBody.prompt.length / 6);
}
} else if (modelId.includes('ai21.jamba')) {
if (requestBody.max_tokens !== undefined) {
spanAttributes[AwsSpanProcessingUtil.GEN_AI_REQUEST_MAX_TOKENS] = requestBody.max_tokens;
Expand All @@ -265,7 +284,7 @@ export class BedrockRuntimeServiceExtension implements ServiceExtension {
if (requestBody.top_p !== undefined) {
spanAttributes[AwsSpanProcessingUtil.GEN_AI_REQUEST_TOP_P] = requestBody.top_p;
}
} else if (modelId.includes('mistral.mistral')) {
} else if (modelId.includes('mistral')) {
if (requestBody.prompt !== undefined) {
// NOTE: We approximate the token count since this value is not directly available in the body
// According to Bedrock docs they use (total_chars / 6) to approximate token count for pricing.
Expand Down Expand Up @@ -329,13 +348,18 @@ export class BedrockRuntimeServiceExtension implements ServiceExtension {
if (responseBody.stop_reason !== undefined) {
span.setAttribute(AwsSpanProcessingUtil.GEN_AI_RESPONSE_FINISH_REASONS, [responseBody.stop_reason]);
}
} else if (currentModelId.includes('cohere.command')) {
if (responseBody.prompt !== undefined) {
} else if (currentModelId.includes('cohere.command-r')) {
console.log('Response Body:', responseBody);
if (responseBody.text !== undefined) {
// NOTE: We approximate the token count since this value is not directly available in the body
// According to Bedrock docs they use (total_chars / 6) to approximate token count for pricing.
// https://docs.aws.amazon.com/bedrock/latest/userguide/model-customization-prepare.html
span.setAttribute(AwsSpanProcessingUtil.GEN_AI_USAGE_INPUT_TOKENS, Math.ceil(responseBody.prompt.length / 6));
span.setAttribute(AwsSpanProcessingUtil.GEN_AI_USAGE_OUTPUT_TOKENS, Math.ceil(responseBody.text.length / 6));
}
if (responseBody.finish_reason !== undefined) {
span.setAttribute(AwsSpanProcessingUtil.GEN_AI_RESPONSE_FINISH_REASONS, [responseBody.finish_reason]);
}
} else if (currentModelId.includes('cohere.command')) {
if (responseBody.generations?.[0]?.text !== undefined) {
span.setAttribute(
AwsSpanProcessingUtil.GEN_AI_USAGE_OUTPUT_TOKENS,
Expand All @@ -362,7 +386,7 @@ export class BedrockRuntimeServiceExtension implements ServiceExtension {
responseBody.choices[0].finish_reason,
]);
}
} else if (currentModelId.includes('mistral.mistral')) {
} else if (currentModelId.includes('mistral')) {
if (responseBody.outputs?.[0]?.text !== undefined) {
span.setAttribute(
AwsSpanProcessingUtil.GEN_AI_USAGE_OUTPUT_TOKENS,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -517,6 +517,60 @@ describe('BedrockRuntime', () => {
expect(invokeModelSpan.kind).toBe(SpanKind.CLIENT);
});

it('Add Cohere Command R model attributes to span', async () => {
const modelId: string = 'cohere.command-r-v1:0"';
const prompt: string = "Describe the purpose of a 'hello world' program in one line";
const nativeRequest: any = {
message: prompt,
max_tokens: 512,
temperature: 0.5,
p: 0.65,
};
const mockRequestBody: string = JSON.stringify(nativeRequest);
const mockResponseBody: any = {
finish_reason: 'COMPLETE',
text: 'test-generation-text',
prompt: prompt,
request: {
commandInput: {
modelId: modelId,
},
},
};

nock(`https://bedrock-runtime.${region}.amazonaws.com`)
.post(`/model/${encodeURIComponent(modelId)}/invoke`)
.reply(200, mockResponseBody);

await bedrock
.invokeModel({
modelId: modelId,
body: mockRequestBody,
})
.catch((err: any) => {
console.log('error', err);
});

const testSpans: ReadableSpan[] = getTestSpans();
const invokeModelSpans: ReadableSpan[] = testSpans.filter((s: ReadableSpan) => {
return s.name === 'BedrockRuntime.InvokeModel';
});
expect(invokeModelSpans.length).toBe(1);
const invokeModelSpan = invokeModelSpans[0];
expect(invokeModelSpan.attributes[AWS_ATTRIBUTE_KEYS.AWS_BEDROCK_AGENT_ID]).toBeUndefined();
expect(invokeModelSpan.attributes[AWS_ATTRIBUTE_KEYS.AWS_BEDROCK_KNOWLEDGE_BASE_ID]).toBeUndefined();
expect(invokeModelSpan.attributes[AWS_ATTRIBUTE_KEYS.AWS_BEDROCK_DATA_SOURCE_ID]).toBeUndefined();
expect(invokeModelSpan.attributes[AwsSpanProcessingUtil.GEN_AI_SYSTEM]).toBe('aws_bedrock');
expect(invokeModelSpan.attributes[AwsSpanProcessingUtil.GEN_AI_REQUEST_MODEL]).toBe(modelId);
expect(invokeModelSpan.attributes[AwsSpanProcessingUtil.GEN_AI_REQUEST_MAX_TOKENS]).toBe(512);
expect(invokeModelSpan.attributes[AwsSpanProcessingUtil.GEN_AI_REQUEST_TEMPERATURE]).toBe(0.5);
expect(invokeModelSpan.attributes[AwsSpanProcessingUtil.GEN_AI_REQUEST_TOP_P]).toBe(0.65);
expect(invokeModelSpan.attributes[AwsSpanProcessingUtil.GEN_AI_USAGE_INPUT_TOKENS]).toBe(10);
expect(invokeModelSpan.attributes[AwsSpanProcessingUtil.GEN_AI_USAGE_OUTPUT_TOKENS]).toBe(4);
expect(invokeModelSpan.attributes[AwsSpanProcessingUtil.GEN_AI_RESPONSE_FINISH_REASONS]).toEqual(['COMPLETE']);
expect(invokeModelSpan.kind).toBe(SpanKind.CLIENT);
});

it('Add Meta Llama model attributes to span', async () => {
const modelId: string = 'meta.llama2-13b-chat-v1';
const prompt: string = 'Describe the purpose of an interpreter program in one line.';
Expand Down
Loading