Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion tests/test_networks/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,7 @@ def typical_point_inference_network_subnet():
"spline_coupling_flow",
"flow_matching",
"free_form_flow",
"consistency_model",
],
scope="function",
)
Expand All @@ -106,7 +107,8 @@ def inference_network_subnet(request):


@pytest.fixture(
params=["affine_coupling_flow", "spline_coupling_flow", "flow_matching", "free_form_flow"], scope="function"
params=["affine_coupling_flow", "spline_coupling_flow", "flow_matching", "free_form_flow", "consistency_model"],
scope="function",
)
def generative_inference_network(request):
return request.getfixturevalue(request.param)
Expand Down
38 changes: 29 additions & 9 deletions tests/test_networks/test_inference_networks.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,13 +36,21 @@ def test_variable_batch_size(inference_network, random_samples, random_condition
else:
new_conditions = keras.ops.zeros((bs,) + keras.ops.shape(random_conditions)[1:])

inference_network(new_input, conditions=new_conditions)
try:
inference_network(new_input, conditions=new_conditions)
except NotImplementedError:
# network is not invertible
pass
inference_network(new_input, conditions=new_conditions, inverse=True)


@pytest.mark.parametrize("density", [True, False])
def test_output_structure(density, generative_inference_network, random_samples, random_conditions):
output = generative_inference_network(random_samples, conditions=random_conditions, density=density)
try:
output = generative_inference_network(random_samples, conditions=random_conditions, density=density)
except NotImplementedError:
# network not invertible
return

if density:
assert isinstance(output, tuple)
Expand All @@ -57,9 +65,13 @@ def test_output_structure(density, generative_inference_network, random_samples,


def test_output_shape(generative_inference_network, random_samples, random_conditions):
forward_output, forward_log_density = generative_inference_network(
random_samples, conditions=random_conditions, density=True
)
try:
forward_output, forward_log_density = generative_inference_network(
random_samples, conditions=random_conditions, density=True
)
except NotImplementedError:
# network is not invertible, not forward function available
return

assert keras.ops.shape(forward_output) == keras.ops.shape(random_samples)
assert keras.ops.shape(forward_log_density) == (keras.ops.shape(random_samples)[0],)
Expand All @@ -74,9 +86,13 @@ def test_output_shape(generative_inference_network, random_samples, random_condi

def test_cycle_consistency(generative_inference_network, random_samples, random_conditions):
# cycle-consistency means the forward and inverse methods are inverses of each other
forward_output, forward_log_density = generative_inference_network(
random_samples, conditions=random_conditions, density=True
)
try:
forward_output, forward_log_density = generative_inference_network(
random_samples, conditions=random_conditions, density=True
)
except NotImplementedError:
# network is not invertible, cycle consistency cannot be tested.
return
inverse_output, inverse_log_density = generative_inference_network(
forward_output, conditions=random_conditions, density=True, inverse=True
)
Expand All @@ -88,7 +104,11 @@ def test_cycle_consistency(generative_inference_network, random_samples, random_
def test_density_numerically(generative_inference_network, random_samples, random_conditions):
from bayesflow.utils import jacobian

output, log_density = generative_inference_network(random_samples, conditions=random_conditions, density=True)
try:
output, log_density = generative_inference_network(random_samples, conditions=random_conditions, density=True)
except NotImplementedError:
# network does not support density estimation
return

def f(x):
return generative_inference_network(x, conditions=random_conditions)
Expand Down