-
Notifications
You must be signed in to change notification settings - Fork 328
Add Camera Pose op #894
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
+419
−1
Merged
Add Camera Pose op #894
Changes from all commits
Commits
Show all changes
10 commits
Select commit
Hold shift + click to select a range
7ea973c
Add DeepCalib, Moge-2 ops & Add Video Undistortion op
Qirui-jiao b4881a0
update according to gemini's comments
Qirui-jiao fa45d2d
Improved MoGe-2 op.
Qirui-jiao 5ef68a8
Merge branch 'main' into dev/camintrinsics_and_video_undistort_ops
Qirui-jiao 23afa8a
Fixed issues with excessive GPU memory usage and numpy version confli…
Qirui-jiao 920ea9d
Merge branch 'main' into dev/camintrinsics_and_video_undistort_ops
Qirui-jiao 2289443
Add video_camera_pose_mapper
Qirui-jiao e86621f
merge dev/camintrinsics_and_video_undistort_ops
Qirui-jiao 38a9eac
update_0206
Qirui-jiao e1aa2fd
update init.py
Qirui-jiao File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,337 @@ | ||
| import os | ||
| import subprocess | ||
|
|
||
| import numpy as np | ||
| from pydantic import PositiveInt | ||
|
|
||
| import data_juicer | ||
| from data_juicer.ops.load import load_ops | ||
| from data_juicer.utils.cache_utils import DATA_JUICER_ASSETS_CACHE | ||
| from data_juicer.utils.constant import Fields, MetaKeys | ||
| from data_juicer.utils.lazy_loader import LazyLoader | ||
|
|
||
| from ..base_op import OPERATORS, Mapper | ||
| from ..op_fusion import LOADED_VIDEOS | ||
|
|
||
| OP_NAME = "video_camera_pose_mapper" | ||
|
|
||
| cv2 = LazyLoader("cv2", "opencv-python") | ||
| torch = LazyLoader("torch") | ||
|
|
||
|
|
||
| @OPERATORS.register_module(OP_NAME) | ||
| @LOADED_VIDEOS.register_module(OP_NAME) | ||
| class VideoCameraPoseMapper(Mapper): | ||
| """Extract camera poses by leveraging MegaSaM and MoGe-2.""" | ||
|
|
||
| _accelerator = "cuda" | ||
|
|
||
| def __init__( | ||
| self, | ||
| moge_model_path: str = "Ruicheng/moge-2-vitl", | ||
| frame_num: PositiveInt = 3, | ||
| duration: float = 0, | ||
| tag_field_name: str = MetaKeys.video_camera_pose_tags, | ||
| frame_dir: str = DATA_JUICER_ASSETS_CACHE, | ||
| if_output_moge_info: bool = False, | ||
| moge_output_info_dir: str = DATA_JUICER_ASSETS_CACHE, | ||
| if_save_info: bool = True, | ||
| output_info_dir: str = DATA_JUICER_ASSETS_CACHE, | ||
| max_frames: int = 1000, | ||
| *args, | ||
| **kwargs, | ||
| ): | ||
| """ | ||
| Initialization method. | ||
| :param moge_model_path: The path to the Moge-2 model. | ||
| :param frame_num: The number of frames to be extracted uniformly from | ||
| the video. If it's 1, only the middle frame will be extracted. If | ||
| it's 2, only the first and the last frames will be extracted. If | ||
| it's larger than 2, in addition to the first and the last frames, | ||
| other frames will be extracted uniformly within the video duration. | ||
| If "duration" > 0, frame_num is the number of frames per segment. | ||
| :param duration: The duration of each segment in seconds. | ||
| If 0, frames are extracted from the entire video. | ||
| If duration > 0, the video is segmented into multiple segments | ||
| based on duration, and frames are extracted from each segment. | ||
| :param tag_field_name: The field name to store the tags. It's | ||
| "video_camera_pose_tags" in default. | ||
| :param frame_dir: Output directory to save extracted frames. | ||
| :param if_output_moge_info: Whether to save the results from MoGe-2 | ||
| to an JSON file. | ||
| :param moge_output_info_dir: Output directory for saving camera | ||
| parameters. | ||
| :param if_save_info: Whether to save the results to an npz file. | ||
| :param output_info_dir: Path for saving the results. | ||
| :param max_frames: Maximum number of frames to save. | ||
| :param args: extra args | ||
| :param kwargs: extra args | ||
| """ | ||
|
|
||
| super().__init__(*args, **kwargs) | ||
|
|
||
| self.video_camera_calibration_static_moge_mapper_args = { | ||
| "model_path": moge_model_path, | ||
| "frame_num": frame_num, | ||
| "duration": duration, | ||
| "frame_dir": frame_dir, | ||
| "if_output_points_info": False, | ||
| "if_output_depth_info": True, | ||
| "if_output_mask_info": True, | ||
| "if_output_info": if_output_moge_info, | ||
| "output_info_dir": moge_output_info_dir, | ||
| } | ||
| self.fused_ops = load_ops( | ||
| [{"video_camera_calibration_static_moge_mapper": self.video_camera_calibration_static_moge_mapper_args}] | ||
| ) | ||
|
|
||
| megasam_repo_path = os.path.join(DATA_JUICER_ASSETS_CACHE, "mega-sam") | ||
| if not os.path.exists(megasam_repo_path): | ||
| subprocess.run(["git", "clone", "https://github.com/mega-sam/mega-sam.git", megasam_repo_path], check=True) | ||
| subprocess.run( | ||
| ["git", "submodule", "update", "--init", "--recursive"], cwd=os.path.join(megasam_repo_path, "base") | ||
| ) | ||
Qirui-jiao marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
| with open(os.path.join(megasam_repo_path, "base", "src", "altcorr_kernel.cu"), "r") as f: | ||
| temp_file_content = f.read() | ||
| temp_file_content = temp_file_content.replace(".type()", ".scalar_type()") | ||
|
|
||
| with open(os.path.join(megasam_repo_path, "base", "src", "altcorr_kernel.cu"), "w") as f: | ||
| f.write(temp_file_content) | ||
|
|
||
| with open(os.path.join(megasam_repo_path, "base", "src", "correlation_kernels.cu"), "r") as f: | ||
| temp_file_content = f.read() | ||
| temp_file_content = temp_file_content.replace(".type()", ".scalar_type()") | ||
|
|
||
| with open(os.path.join(megasam_repo_path, "base", "src", "correlation_kernels.cu"), "w") as f: | ||
| f.write(temp_file_content) | ||
|
|
||
| with open(os.path.join(megasam_repo_path, "base", "src", "droid_kernels.cu"), "r") as f: | ||
| temp_file_content = f.read() | ||
| temp_file_content = temp_file_content.replace(".type()", ".scalar_type()") | ||
|
|
||
| with open(os.path.join(megasam_repo_path, "base", "src", "droid_kernels.cu"), "w") as f: | ||
| f.write(temp_file_content) | ||
|
|
||
| with open( | ||
| os.path.join(megasam_repo_path, "base", "thirdparty", "lietorch", "lietorch", "src", "lietorch_gpu.cu"), | ||
| "r", | ||
| ) as f: | ||
| temp_file_content = f.read() | ||
| temp_file_content = temp_file_content.replace(".type()", ".scalar_type()") | ||
|
|
||
| with open( | ||
| os.path.join(megasam_repo_path, "base", "thirdparty", "lietorch", "lietorch", "src", "lietorch_gpu.cu"), | ||
| "w", | ||
| ) as f: | ||
| f.write(temp_file_content) | ||
|
|
||
| with open( | ||
| os.path.join( | ||
| megasam_repo_path, "base", "thirdparty", "lietorch", "lietorch", "src", "lietorch_cpu.cpp" | ||
| ), | ||
| "r", | ||
| ) as f: | ||
| temp_file_content = f.read() | ||
| temp_file_content = temp_file_content.replace(".type()", ".scalar_type()") | ||
|
|
||
| with open( | ||
| os.path.join( | ||
| megasam_repo_path, "base", "thirdparty", "lietorch", "lietorch", "src", "lietorch_cpu.cpp" | ||
| ), | ||
| "w", | ||
| ) as f: | ||
| f.write(temp_file_content) | ||
|
|
||
| try: | ||
| import droid_backends | ||
| import lietorch | ||
|
|
||
| self.droid_backends = droid_backends | ||
| self.lietorch = lietorch | ||
| except ImportError: | ||
| subprocess.run(["python", "setup.py", "install"], cwd=os.path.join(megasam_repo_path, "base")) | ||
|
|
||
| try: | ||
| import torch_scatter | ||
|
|
||
| self.torch_scatter = torch_scatter | ||
| except ImportError: | ||
| """ "Please refer to https://github.com/rusty1s/pytorch_scatter to locate the | ||
| installation link that is compatible with your PyTorch and CUDA versions.""" | ||
| torch_version = "2.8.0" | ||
| cuda_version = "cu128" | ||
| subprocess.run( | ||
| [ | ||
| "pip", | ||
| "install", | ||
| "torch-scatter", | ||
| "-f", | ||
| f"https://data.pyg.org/whl/torch-{torch_version}+{cuda_version}.html", | ||
| ], | ||
| cwd=os.path.join(megasam_repo_path, "base"), | ||
| ) | ||
|
|
||
| import sys | ||
|
|
||
| sys.path.append(os.path.join(megasam_repo_path, "base", "droid_slam")) | ||
| from droid import Droid | ||
| from lietorch import SE3 | ||
|
|
||
| self.SE3 = SE3 | ||
| self.Droid = Droid | ||
|
|
||
| self.tag_field_name = tag_field_name | ||
| self.if_save_info = if_save_info | ||
| self.output_info_dir = output_info_dir | ||
| self.max_frames = max_frames | ||
| self.frame_dir = frame_dir | ||
|
|
||
| def image_stream(self, frames_path, depth_list, intrinsics_list): | ||
|
|
||
| for t, (image_path, depth, intrinsics) in enumerate(zip(frames_path, depth_list, intrinsics_list)): | ||
| image = cv2.imread(image_path) | ||
| h0, w0, _ = image.shape | ||
| h1 = int(h0 * np.sqrt((384 * 512) / (h0 * w0))) | ||
| w1 = int(w0 * np.sqrt((384 * 512) / (h0 * w0))) | ||
|
|
||
| image = cv2.resize(image, (w1, h1), interpolation=cv2.INTER_AREA) | ||
| image = image[: h1 - h1 % 8, : w1 - w1 % 8] | ||
| image = torch.as_tensor(image).permute(2, 0, 1) | ||
| image = image[None] | ||
|
|
||
| depth = torch.as_tensor(depth) | ||
| depth = torch.nn.functional.interpolate(depth[None, None], (h1, w1), mode="nearest-exact").squeeze() | ||
| depth = depth[: h1 - h1 % 8, : w1 - w1 % 8] | ||
|
|
||
| mask = torch.ones_like(depth) | ||
|
|
||
| intrinsics = torch.as_tensor([intrinsics[0][0], intrinsics[1][1], intrinsics[0][2], intrinsics[1][2]]) | ||
| intrinsics[0::2] *= w1 / w0 | ||
| intrinsics[1::2] *= h1 / h0 | ||
|
|
||
| yield t, image, depth, intrinsics, mask | ||
|
|
||
| def process_single(self, sample=None, rank=None): | ||
| # check if it's generated already | ||
| if self.tag_field_name in sample[Fields.meta]: | ||
| return sample | ||
|
|
||
| # there is no video in this sample | ||
| if self.video_key not in sample or not sample[self.video_key]: | ||
| return [] | ||
|
|
||
| ds_list = [{"videos": sample[self.video_key]}] | ||
|
|
||
| dataset = data_juicer.core.data.NestedDataset.from_list(ds_list) | ||
| if Fields.meta not in dataset.features: | ||
| dataset = dataset.add_column(name=Fields.meta, column=[{}] * dataset.num_rows) | ||
| dataset = dataset.map(self.fused_ops[0].process, num_proc=1, with_rank=True) | ||
| res_list = dataset.to_list() | ||
|
|
||
| temp_frame_name = os.path.splitext(os.path.basename(sample[self.video_key][0]))[0] | ||
| frames_root = os.path.join(self.frame_dir, temp_frame_name) | ||
| frame_names = os.listdir(frames_root) | ||
| frames_path = sorted([os.path.join(frames_root, frame_name) for frame_name in frame_names]) | ||
|
|
||
| depth_list = res_list[0][Fields.meta][MetaKeys.static_camera_calibration_moge_tags]["depth_list"] | ||
| intrinsics_list = res_list[0][Fields.meta][MetaKeys.static_camera_calibration_moge_tags]["intrinsics_list"] | ||
|
|
||
| valid_image_list = [] | ||
| valid_depth_list = [] | ||
| valid_intrinsics_list = [] | ||
| valid_mask_list = [] | ||
|
|
||
| # for t, (image_path, depth, intrinsics) in enumerate(zip(frames_path, depth_list, intrinsics_list)): | ||
|
|
||
| for t, image, depth, intrinsics, mask in self.image_stream(frames_path, depth_list, intrinsics_list): | ||
|
|
||
| valid_image_list.append(image[0]) | ||
| valid_depth_list.append(depth) | ||
| valid_mask_list.append(mask) | ||
| valid_intrinsics_list.append(intrinsics) | ||
|
|
||
| if t == 0: | ||
| args = droid_args(image_size=[image.shape[2], image.shape[3]]) | ||
| droid = self.Droid(args) | ||
|
|
||
| droid.track(t, image, depth, intrinsics=intrinsics, mask=mask) | ||
|
|
||
| droid.track_final(t, image, depth, intrinsics=intrinsics, mask=mask) | ||
|
|
||
| traj_est, depth_est, motion_prob = droid.terminate( | ||
| self.image_stream(frames_path, depth_list, intrinsics_list), | ||
| _opt_intr=True, | ||
| full_ba=True, | ||
| scene_name=temp_frame_name, | ||
| ) | ||
|
|
||
| t = traj_est.shape[0] | ||
| images = np.array(valid_image_list[:t]) | ||
| disps = 1.0 / (np.array(valid_depth_list[:t]) + 1e-6) | ||
|
|
||
| poses = traj_est | ||
| intrinsics = droid.video.intrinsics[:t].cpu().numpy() | ||
|
|
||
| intrinsics = intrinsics[0] * 8.0 | ||
| poses_th = torch.as_tensor(poses, device="cpu") | ||
| cam_c2w = self.SE3(poses_th).inv().matrix().numpy() | ||
|
|
||
| K = np.eye(3) | ||
| K[0, 0] = intrinsics[0] | ||
| K[1, 1] = intrinsics[1] | ||
| K[0, 2] = intrinsics[2] | ||
| K[1, 2] = intrinsics[3] | ||
|
|
||
| max_frames = min(self.max_frames, images.shape[0]) | ||
|
|
||
| return_images = np.uint8(images[:max_frames, ::-1, ...].transpose(0, 2, 3, 1)) | ||
| return_depths = np.float32(1.0 / disps[:max_frames, ...]) | ||
| return_cam_c2w = cam_c2w[:max_frames] | ||
|
|
||
| if self.if_save_info: | ||
| os.makedirs(self.output_info_dir, exist_ok=True) | ||
|
|
||
| np.savez( | ||
| os.path.join(self.output_info_dir, "%s_droid.npz" % temp_frame_name), | ||
| images=return_images, | ||
| depths=return_depths, | ||
| intrinsic=K, | ||
| cam_c2w=return_cam_c2w, | ||
| ) | ||
|
|
||
| sample[Fields.meta][self.tag_field_name] = { | ||
| "frames_folder": frames_root, | ||
| "frame_names": frame_names, | ||
| "images": return_images, | ||
| "depths": return_depths, | ||
| "intrinsic": K, | ||
| "cam_c2w": return_cam_c2w, | ||
| } | ||
|
|
||
| return sample | ||
|
|
||
|
|
||
| class droid_args: | ||
| def __init__(self, image_size): | ||
| self.weights = os.path.join(DATA_JUICER_ASSETS_CACHE, "mega-sam", "checkpoints", "megasam_final.pth") | ||
| self.disable_vis = True | ||
| self.image_size = image_size | ||
| self.buffer = 1024 | ||
| self.stereo = False | ||
| self.filter_thresh = 2.0 | ||
|
|
||
| self.warmup = 8 | ||
| self.beta = 0.3 | ||
| self.frontend_nms = 1 | ||
| self.keyframe_thresh = 2.0 | ||
| self.frontend_window = 25 | ||
| self.frontend_thresh = 12.0 | ||
| self.frontend_radius = 2 | ||
|
|
||
| self.upsample = False | ||
| self.backend_thresh = 16.0 | ||
| self.backend_radius = 2 | ||
| self.backend_nms = 3 | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.