Skip to content

galilai-group/stable-worldmodel

Repository files navigation

Documentation Tests PyPI PyTorch Ruff

stable-worldmodel

World model research made simple. From data collection to training and evaluation.

pip install stable-worldmodel

Note: The library is still in active development.

See the full documentation at here.

Quick Example

import stable_worldmodel as swm
from stable_worldmodel.data import HDF5Dataset
from stable_worldmodel.policy import WorldModelPolicy, PlanConfig
from stable_worldmodel.solver import CEMSolver

# collect a dataset
world = swm.World('swm/PushT-v1', num_envs=8)
world.set_policy(your_expert_policy)
world.record_dataset(dataset_name='pusht_demo', episodes=100)

# load dataset and train your world model
dataset = HDF5Dataset(name='pusht_demo', num_steps=16)
world_model = ...  # your world-model

# evaluate with model predictive control
solver = CEMSolver(model=world_model, num_samples=300)
policy = WorldModelPolicy(solver=solver, config=PlanConfig(horizon=10))

world.set_policy(policy)
results = world.evaluate(episodes=50)
print(f"Success Rate: {results['success_rate']:.1f}%")

Supported Environments

Environments Grid 1
Environments Grid 2

Contributing

Setup your codebase:

uv venv --python=3.10
source .venv/bin/activate
uv sync --all-extras --group dev

Questions

If you have a question, please file an issue.

Citation

@misc{maes_lelidec2026swm-1,
      title={stable-worldmodel-v1: Reproducible World Modeling Research and Evaluation}, 
      author = {Lucas Maes and Quentin Le Lidec and Dan Haramati and
                Nassim Massaudi and Damien Scieur and Yann LeCun and
                Randall Balestriero},
      year={2026},
      eprint={2602.08968},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2602.08968}, 
}

About

Reliable, minimal and scalable library for evaluate and conduct world model research

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 8