Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions src/diffusers/loaders/lora_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -2468,6 +2468,9 @@ def _maybe_expand_lora_state_dict(cls, transformer, lora_state_dict):
base_param_name = (
f"{k.replace(prefix, '')}.base_layer.weight" if is_peft_loaded else f"{k.replace(prefix, '')}.weight"
)
# This means the corresponding layer doesn't have any LoRA.
if base_param_name not in transformer_state_dict:
continue
base_weight_param = transformer_state_dict[base_param_name]
lora_A_param = lora_state_dict[f"{prefix}{k}.lora_A.weight"]

Expand Down
50 changes: 50 additions & 0 deletions tests/lora/test_lora_layers_flux.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import gc
import os
import sys
Expand Down Expand Up @@ -162,6 +163,55 @@ def test_with_alpha_in_state_dict(self):
)
self.assertFalse(np.allclose(images_lora_with_alpha, images_lora, atol=1e-3, rtol=1e-3))

def test_lora_expansion_works_for_absent_keys(self):
components, _, denoiser_lora_config = self.get_dummy_components(FlowMatchEulerDiscreteScheduler)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)

output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertTrue(output_no_lora.shape == self.output_shape)

# Modify the config to have a layer which won't be present in the second LoRA we will load.
modified_denoiser_lora_config = copy.deepcopy(denoiser_lora_config)
modified_denoiser_lora_config.target_modules.add("x_embedder")

pipe.transformer.add_adapter(modified_denoiser_lora_config)
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")

images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
self.assertFalse(
np.allclose(images_lora, output_no_lora, atol=1e-3, rtol=1e-3),
"LoRA should lead to different results.",
)

with tempfile.TemporaryDirectory() as tmpdirname:
denoiser_state_dict = get_peft_model_state_dict(pipe.transformer)
self.pipeline_class.save_lora_weights(tmpdirname, transformer_lora_layers=denoiser_state_dict)

self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
pipe.unload_lora_weights()
pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"), adapter_name="one")

# Modify the state dict to exclude "x_embedder" related LoRA params.
lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
lora_state_dict_without_xembedder = {k: v for k, v in lora_state_dict.items() if "x_embedder" not in k}

pipe.load_lora_weights(lora_state_dict_without_xembedder, adapter_name="two")
pipe.set_adapters(["one", "two"])
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
images_lora_with_absent_keys = pipe(**inputs, generator=torch.manual_seed(0)).images

self.assertFalse(
np.allclose(images_lora, images_lora_with_absent_keys, atol=1e-3, rtol=1e-3),
"Different LoRAs should lead to different results.",
)
self.assertFalse(
np.allclose(output_no_lora, images_lora_with_absent_keys, atol=1e-3, rtol=1e-3),
"LoRA should lead to different results.",
)

@unittest.skip("Not supported in Flux.")
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
pass
Expand Down
Loading