-
Notifications
You must be signed in to change notification settings - Fork 15k
[mlir][linalg] Add pattern to clean unused results after fusion #158624
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
In some cases, elementwise fusion can produce ops with multiple results, but only one of them is used in the IR. This makes the IR less readable and prevents additional fusions from being triggered. This patch adds the `DropRedundantResultsFromGenericOps` pattern to find these outputs and convert them into inputs. Signed-off-by: Pavel Lipskiy <[email protected]>
|
Thank you for submitting a Pull Request (PR) to the LLVM Project! This PR will be automatically labeled and the relevant teams will be notified. If you wish to, you can add reviewers by using the "Reviewers" section on this page. If this is not working for you, it is probably because you do not have write permissions for the repository. In which case you can instead tag reviewers by name in a comment by using If you have received no comments on your PR for a week, you can request a review by "ping"ing the PR by adding a comment “Ping”. The common courtesy "ping" rate is once a week. Please remember that you are asking for valuable time from other developers. If you have further questions, they may be answered by the LLVM GitHub User Guide. You can also ask questions in a comment on this PR, on the LLVM Discord or on the forums. |
|
@llvm/pr-subscribers-mlir-linalg Author: Pavel Lipskiy (pavlips) ChangesIn some cases, elementwise fusion can produce ops with multiple results, but only one of them is used in the IR. This makes the IR less readable and prevents additional fusions from being triggered. This patch adds the Full diff: https://github.com/llvm/llvm-project/pull/158624.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
index 3bd763ea00cd7..aac54327213ac 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
@@ -2200,6 +2200,56 @@ struct RemoveOutsDependency : public OpRewritePattern<GenericOp> {
}
};
+/// Drops an unused result from an elementwise `linalg.generic` by
+/// reclassifying its tied `outs` operand as an extra input operand.
+struct DropRedundantResultsFromGenericOps
+ : public OpRewritePattern<linalg::GenericOp> {
+ using OpRewritePattern<linalg::GenericOp>::OpRewritePattern;
+ LogicalResult matchAndRewrite(linalg::GenericOp op,
+ PatternRewriter &rewriter) const override {
+ if (!linalg::isElementwise(op) || op.getNumResults() < 2U)
+ return failure();
+ // Given that the op has no reductions, there is no need to preserve an
+ // unused result: transform it into an input instead.
+ auto maybeUnusedRes = llvm::find_if(
+ op.getResults(), [](OpResult res) { return res.use_empty(); });
+ if (maybeUnusedRes == op.getResults().end())
+ return failure();
+ OpResult unusedRes = *maybeUnusedRes;
+ const unsigned resIdx = unusedRes.getResultNumber();
+ auto resTypes = llvm::to_vector(op.getResultTypes());
+ resTypes.erase(resTypes.begin() + resIdx);
+ SmallVector<Value> resValues = llvm::to_vector_of<Value>(op.getResults());
+ resValues.erase(resValues.begin() + resIdx);
+ const int64_t numInputs = op.getNumDpsInputs();
+ OpOperand *resOperand = op.getTiedOpOperand(unusedRes);
+ AffineMap map = op.getIndexingMapMatchingResult(unusedRes);
+ const unsigned operandIdx = resOperand->getOperandNumber();
+ // Remove the output operand and add it as an input operand with the same
+ // map.
+ SmallVector<Value> outs(op.getOutputs());
+ outs.erase(outs.begin() + resIdx);
+ SmallVector<Value> ins(op.getInputs());
+ ins.insert(ins.begin() + numInputs, resOperand->get());
+ SmallVector<AffineMap> maps = op.getIndexingMapsArray();
+ maps.erase(maps.begin() + operandIdx);
+ maps.insert(maps.begin() + numInputs, map);
+ rewriter.setInsertionPoint(op);
+ auto newGenericOp = rewriter.create<linalg::GenericOp>(
+ op.getLoc(), TypeRange(resTypes), ins, outs, maps,
+ op.getIteratorTypesArray());
+ op->setDiscardableAttrs(op->getDiscardableAttrDictionary());
+ op.getBody()->getTerminator()->eraseOperands(resIdx);
+ newGenericOp.getRegion().takeBody(op.getBodyRegion());
+ // Replace the remaining results of the old op with the results of the new
+ // op.
+ rewriter.replaceAllUsesWith(resValues, newGenericOp.getResults());
+ // Remove the old op.
+ rewriter.eraseOp(op);
+ return success();
+ }
+};
+
/// Fold linalg.fill into linalg.generic
struct FoldFillWithGenericOp : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
@@ -2262,6 +2312,7 @@ void mlir::linalg::populateElementwiseOpsFusionPatterns(
RemoveOutsDependency>(context);
// Add the patterns that clean up dead operands and results.
populateEraseUnusedOperandsAndResultsPatterns(patterns);
+ patterns.add<DropRedundantResultsFromGenericOps>(context);
}
void mlir::linalg::populateCollapseDimensions(
diff --git a/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir b/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
index bc55c12c02f29..173ec8a8a5f38 100644
--- a/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
+++ b/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
@@ -1079,4 +1079,25 @@ module {
// CHECK-NOT: linalg.generic
// CHECK: tensor.expand_shape
// CHECK: linalg.generic {{.*}}, iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "reduction"]}
-// CHECK-SAME: ins(%[[ARG0]], %[[FUSED]]#1 : tensor<1x1x2x1xf32>, tensor<4x1x1x1xf32>)
\ No newline at end of file
+// CHECK-SAME: ins(%[[ARG0]], %[[FUSED]]#1 : tensor<1x1x2x1xf32>, tensor<4x1x1x1xf32>)
+
+// -----
+// CHECK-LABEL: @drop_unused_results
+// CHECK-SAME: [[ARG0:%[a-zA-Z0-9]+]]: tensor<64xf32>, [[ARG1:%[a-zA-Z0-9]+]]: tensor<1x56x56x64xf32>
+func.func @drop_unused_results(%arg0: tensor<64xf32>, %arg1: tensor<1x56x56x64xf32>) -> tensor<1x56x56x64xf32> {
+ %cst = arith.constant 3.40282347E+38 : f32
+ %cst_0 = arith.constant 0.000000e+00 : f32
+ // CHECK: [[OUT:%[a-zA-Z0-9]+]] = tensor.empty() : tensor<1x56x56x64xf32>
+ %0 = tensor.empty() : tensor<1x56x56x64xf32>
+ // CHECK: [[RES:%[0-9]+]] = linalg.generic {{.*}} ins([[ARG0]], [[ARG1]] : tensor<64xf32>, tensor<1x56x56x64xf32>) outs([[OUT]] : tensor<1x56x56x64xf32>)
+ %1:2 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d3)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg0 : tensor<64xf32>) outs(%arg1, %0 : tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>) {
+ ^bb0(%in: f32, %out: f32, %out_1: f32):
+ %2 = arith.addf %in, %out : f32
+ %3 = arith.minimumf %2, %cst : f32
+ %4 = arith.maximumf %3, %cst_0 : f32
+ linalg.yield %2, %4 : f32, f32
+ } -> (tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>)
+ // CHECK: -> tensor<1x56x56x64xf32>
+ // CHECK: return [[RES]] : tensor<1x56x56x64xf32>
+ return %1#1 : tensor<1x56x56x64xf32>
+}
|
|
@llvm/pr-subscribers-mlir Author: Pavel Lipskiy (pavlips) ChangesIn some cases, elementwise fusion can produce ops with multiple results, but only one of them is used in the IR. This makes the IR less readable and prevents additional fusions from being triggered. This patch adds the Full diff: https://github.com/llvm/llvm-project/pull/158624.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
index 3bd763ea00cd7..aac54327213ac 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
@@ -2200,6 +2200,56 @@ struct RemoveOutsDependency : public OpRewritePattern<GenericOp> {
}
};
+/// Drops an unused result from an elementwise `linalg.generic` by
+/// reclassifying its tied `outs` operand as an extra input operand.
+struct DropRedundantResultsFromGenericOps
+ : public OpRewritePattern<linalg::GenericOp> {
+ using OpRewritePattern<linalg::GenericOp>::OpRewritePattern;
+ LogicalResult matchAndRewrite(linalg::GenericOp op,
+ PatternRewriter &rewriter) const override {
+ if (!linalg::isElementwise(op) || op.getNumResults() < 2U)
+ return failure();
+ // Given that the op has no reductions, there is no need to preserve an
+ // unused result: transform it into an input instead.
+ auto maybeUnusedRes = llvm::find_if(
+ op.getResults(), [](OpResult res) { return res.use_empty(); });
+ if (maybeUnusedRes == op.getResults().end())
+ return failure();
+ OpResult unusedRes = *maybeUnusedRes;
+ const unsigned resIdx = unusedRes.getResultNumber();
+ auto resTypes = llvm::to_vector(op.getResultTypes());
+ resTypes.erase(resTypes.begin() + resIdx);
+ SmallVector<Value> resValues = llvm::to_vector_of<Value>(op.getResults());
+ resValues.erase(resValues.begin() + resIdx);
+ const int64_t numInputs = op.getNumDpsInputs();
+ OpOperand *resOperand = op.getTiedOpOperand(unusedRes);
+ AffineMap map = op.getIndexingMapMatchingResult(unusedRes);
+ const unsigned operandIdx = resOperand->getOperandNumber();
+ // Remove the output operand and add it as an input operand with the same
+ // map.
+ SmallVector<Value> outs(op.getOutputs());
+ outs.erase(outs.begin() + resIdx);
+ SmallVector<Value> ins(op.getInputs());
+ ins.insert(ins.begin() + numInputs, resOperand->get());
+ SmallVector<AffineMap> maps = op.getIndexingMapsArray();
+ maps.erase(maps.begin() + operandIdx);
+ maps.insert(maps.begin() + numInputs, map);
+ rewriter.setInsertionPoint(op);
+ auto newGenericOp = rewriter.create<linalg::GenericOp>(
+ op.getLoc(), TypeRange(resTypes), ins, outs, maps,
+ op.getIteratorTypesArray());
+ op->setDiscardableAttrs(op->getDiscardableAttrDictionary());
+ op.getBody()->getTerminator()->eraseOperands(resIdx);
+ newGenericOp.getRegion().takeBody(op.getBodyRegion());
+ // Replace the remaining results of the old op with the results of the new
+ // op.
+ rewriter.replaceAllUsesWith(resValues, newGenericOp.getResults());
+ // Remove the old op.
+ rewriter.eraseOp(op);
+ return success();
+ }
+};
+
/// Fold linalg.fill into linalg.generic
struct FoldFillWithGenericOp : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
@@ -2262,6 +2312,7 @@ void mlir::linalg::populateElementwiseOpsFusionPatterns(
RemoveOutsDependency>(context);
// Add the patterns that clean up dead operands and results.
populateEraseUnusedOperandsAndResultsPatterns(patterns);
+ patterns.add<DropRedundantResultsFromGenericOps>(context);
}
void mlir::linalg::populateCollapseDimensions(
diff --git a/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir b/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
index bc55c12c02f29..173ec8a8a5f38 100644
--- a/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
+++ b/mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
@@ -1079,4 +1079,25 @@ module {
// CHECK-NOT: linalg.generic
// CHECK: tensor.expand_shape
// CHECK: linalg.generic {{.*}}, iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "reduction"]}
-// CHECK-SAME: ins(%[[ARG0]], %[[FUSED]]#1 : tensor<1x1x2x1xf32>, tensor<4x1x1x1xf32>)
\ No newline at end of file
+// CHECK-SAME: ins(%[[ARG0]], %[[FUSED]]#1 : tensor<1x1x2x1xf32>, tensor<4x1x1x1xf32>)
+
+// -----
+// CHECK-LABEL: @drop_unused_results
+// CHECK-SAME: [[ARG0:%[a-zA-Z0-9]+]]: tensor<64xf32>, [[ARG1:%[a-zA-Z0-9]+]]: tensor<1x56x56x64xf32>
+func.func @drop_unused_results(%arg0: tensor<64xf32>, %arg1: tensor<1x56x56x64xf32>) -> tensor<1x56x56x64xf32> {
+ %cst = arith.constant 3.40282347E+38 : f32
+ %cst_0 = arith.constant 0.000000e+00 : f32
+ // CHECK: [[OUT:%[a-zA-Z0-9]+]] = tensor.empty() : tensor<1x56x56x64xf32>
+ %0 = tensor.empty() : tensor<1x56x56x64xf32>
+ // CHECK: [[RES:%[0-9]+]] = linalg.generic {{.*}} ins([[ARG0]], [[ARG1]] : tensor<64xf32>, tensor<1x56x56x64xf32>) outs([[OUT]] : tensor<1x56x56x64xf32>)
+ %1:2 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d3)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg0 : tensor<64xf32>) outs(%arg1, %0 : tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>) {
+ ^bb0(%in: f32, %out: f32, %out_1: f32):
+ %2 = arith.addf %in, %out : f32
+ %3 = arith.minimumf %2, %cst : f32
+ %4 = arith.maximumf %3, %cst_0 : f32
+ linalg.yield %2, %4 : f32, f32
+ } -> (tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>)
+ // CHECK: -> tensor<1x56x56x64xf32>
+ // CHECK: return [[RES]] : tensor<1x56x56x64xf32>
+ return %1#1 : tensor<1x56x56x64xf32>
+}
|
In some cases, elementwise fusion can produce ops with multiple results, but only one of them is used in the IR. This makes the IR less readable and prevents additional fusions from being triggered.
This patch adds the
DropRedundantResultsFromGenericOpspattern to find these outputs and convert them into inputs.