Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 51 additions & 0 deletions mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2200,6 +2200,56 @@ struct RemoveOutsDependency : public OpRewritePattern<GenericOp> {
}
};

/// Drops an unused result from an elementwise `linalg.generic` by
/// reclassifying its tied `outs` operand as an extra input operand.
struct DropRedundantResultsFromGenericOps
: public OpRewritePattern<linalg::GenericOp> {
using OpRewritePattern<linalg::GenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(linalg::GenericOp op,
PatternRewriter &rewriter) const override {
if (!linalg::isElementwise(op) || op.getNumResults() < 2U)
return failure();
// Given that the op has no reductions, there is no need to preserve an
// unused result: transform it into an input instead.
auto maybeUnusedRes = llvm::find_if(
op.getResults(), [](OpResult res) { return res.use_empty(); });
if (maybeUnusedRes == op.getResults().end())
return failure();
OpResult unusedRes = *maybeUnusedRes;
const unsigned resIdx = unusedRes.getResultNumber();
auto resTypes = llvm::to_vector(op.getResultTypes());
resTypes.erase(resTypes.begin() + resIdx);
SmallVector<Value> resValues = llvm::to_vector_of<Value>(op.getResults());
resValues.erase(resValues.begin() + resIdx);
const int64_t numInputs = op.getNumDpsInputs();
OpOperand *resOperand = op.getTiedOpOperand(unusedRes);
AffineMap map = op.getIndexingMapMatchingResult(unusedRes);
const unsigned operandIdx = resOperand->getOperandNumber();
// Remove the output operand and add it as an input operand with the same
// map.
SmallVector<Value> outs(op.getOutputs());
outs.erase(outs.begin() + resIdx);
SmallVector<Value> ins(op.getInputs());
ins.insert(ins.begin() + numInputs, resOperand->get());
SmallVector<AffineMap> maps = op.getIndexingMapsArray();
maps.erase(maps.begin() + operandIdx);
maps.insert(maps.begin() + numInputs, map);
rewriter.setInsertionPoint(op);
auto newGenericOp = rewriter.create<linalg::GenericOp>(
op.getLoc(), TypeRange(resTypes), ins, outs, maps,
op.getIteratorTypesArray());
op->setDiscardableAttrs(op->getDiscardableAttrDictionary());
op.getBody()->getTerminator()->eraseOperands(resIdx);
newGenericOp.getRegion().takeBody(op.getBodyRegion());
// Replace the remaining results of the old op with the results of the new
// op.
rewriter.replaceAllUsesWith(resValues, newGenericOp.getResults());
// Remove the old op.
rewriter.eraseOp(op);
return success();
}
};

/// Fold linalg.fill into linalg.generic
struct FoldFillWithGenericOp : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
Expand Down Expand Up @@ -2262,6 +2312,7 @@ void mlir::linalg::populateElementwiseOpsFusionPatterns(
RemoveOutsDependency>(context);
// Add the patterns that clean up dead operands and results.
populateEraseUnusedOperandsAndResultsPatterns(patterns);
patterns.add<DropRedundantResultsFromGenericOps>(context);
}

void mlir::linalg::populateCollapseDimensions(
Expand Down
23 changes: 22 additions & 1 deletion mlir/test/Dialect/Linalg/fusion-elementwise-ops.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -1079,4 +1079,25 @@ module {
// CHECK-NOT: linalg.generic
// CHECK: tensor.expand_shape
// CHECK: linalg.generic {{.*}}, iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel", "reduction"]}
// CHECK-SAME: ins(%[[ARG0]], %[[FUSED]]#1 : tensor<1x1x2x1xf32>, tensor<4x1x1x1xf32>)
// CHECK-SAME: ins(%[[ARG0]], %[[FUSED]]#1 : tensor<1x1x2x1xf32>, tensor<4x1x1x1xf32>)

// -----
// CHECK-LABEL: @drop_unused_results
// CHECK-SAME: [[ARG0:%[a-zA-Z0-9]+]]: tensor<64xf32>, [[ARG1:%[a-zA-Z0-9]+]]: tensor<1x56x56x64xf32>
func.func @drop_unused_results(%arg0: tensor<64xf32>, %arg1: tensor<1x56x56x64xf32>) -> tensor<1x56x56x64xf32> {
%cst = arith.constant 3.40282347E+38 : f32
%cst_0 = arith.constant 0.000000e+00 : f32
// CHECK: [[OUT:%[a-zA-Z0-9]+]] = tensor.empty() : tensor<1x56x56x64xf32>
%0 = tensor.empty() : tensor<1x56x56x64xf32>
// CHECK: [[RES:%[0-9]+]] = linalg.generic {{.*}} ins([[ARG0]], [[ARG1]] : tensor<64xf32>, tensor<1x56x56x64xf32>) outs([[OUT]] : tensor<1x56x56x64xf32>)
%1:2 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2, d3) -> (d3)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>, affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg0 : tensor<64xf32>) outs(%arg1, %0 : tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>) {
^bb0(%in: f32, %out: f32, %out_1: f32):
%2 = arith.addf %in, %out : f32
%3 = arith.minimumf %2, %cst : f32
%4 = arith.maximumf %3, %cst_0 : f32
linalg.yield %2, %4 : f32, f32
} -> (tensor<1x56x56x64xf32>, tensor<1x56x56x64xf32>)
// CHECK: -> tensor<1x56x56x64xf32>
// CHECK: return [[RES]] : tensor<1x56x56x64xf32>
return %1#1 : tensor<1x56x56x64xf32>
}