-
Notifications
You must be signed in to change notification settings - Fork 15.2k
[MLIR] Specify new padOp's output type in DropPadUnitDims #150706
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[MLIR] Specify new padOp's output type in DropPadUnitDims #150706
Conversation
|
@llvm/pr-subscribers-mlir-linalg Author: Daniel Garvey (dan-garvey) ChangesPreviously when dropping unit dim from a pad with mixed dynamic/static input/output shapes, the resulting shape would take on the Type of the input, resulting in invalid IR Full diff: https://github.com/llvm/llvm-project/pull/150706.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
index e0062d15e61ca..7194662145bcc 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
@@ -603,6 +603,7 @@ struct DropPadUnitDims : public OpRewritePattern<tensor::PadOp> {
}
ArrayRef<int64_t> sourceShape = padOp.getSourceType().getShape();
+ ArrayRef<int64_t> resultShape = padOp.getResultType().getShape();
int64_t padRank = sourceShape.size();
auto isStaticZero = [](OpFoldResult f) {
@@ -613,16 +614,18 @@ struct DropPadUnitDims : public OpRewritePattern<tensor::PadOp> {
allowedUnitDims.end());
llvm::SmallDenseSet<unsigned> unitDims;
SmallVector<int64_t> newShape;
+ SmallVector<int64_t> newResultShape;
SmallVector<OpFoldResult> newLowPad;
SmallVector<OpFoldResult> newHighPad;
- for (const auto [dim, size, low, high] :
- zip_equal(llvm::seq(static_cast<int64_t>(0), padRank), sourceShape,
- padOp.getMixedLowPad(), padOp.getMixedHighPad())) {
+ for (const auto [dim, size, outSize, low, high] : zip_equal(
+ llvm::seq(static_cast<int64_t>(0), padRank), sourceShape,
+ resultShape, padOp.getMixedLowPad(), padOp.getMixedHighPad())) {
if (unitDimsFilter.contains(dim) && size == 1 && isStaticZero(low) &&
isStaticZero(high)) {
unitDims.insert(dim);
} else {
newShape.push_back(size);
+ newResultShape.push_back(outSize);
newLowPad.push_back(low);
newHighPad.push_back(high);
}
@@ -652,8 +655,11 @@ struct DropPadUnitDims : public OpRewritePattern<tensor::PadOp> {
collapseValue(rewriter, padOp.getLoc(), padOp.getSource(), newShape,
reassociationMap, options.rankReductionStrategy);
+ auto resultType = RankedTensorType::get(
+ newResultShape, padOp.getResultType().getElementType()); //,
+ // padOp.getResultType().getEncoding());
auto newPadOp = rewriter.create<tensor::PadOp>(
- padOp.getLoc(), /*result=*/Type(), collapsedSource, newLowPad,
+ padOp.getLoc(), /*result=*/resultType, collapsedSource, newLowPad,
newHighPad, paddingVal, padOp.getNofold());
Value dest = padOp.getResult();
diff --git a/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir b/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
index a00c798197e5a..5df113b038469 100644
--- a/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
+++ b/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
@@ -1076,6 +1076,44 @@ func.func @drop_known_unit_constant_low_high(%arg0: tensor<1x383x128xf32>) -> te
// -----
+func.func @drop_unit_dim_mixed_static_dynamic(%arg0: tensor<1x?xf32>) -> tensor<1x16xf32> {
+ %c0 = arith.constant 0 : index
+ %c1 = arith.constant 1 : index
+ %cst = arith.constant 0.000000e+00 : f32
+ %padded = tensor.pad %arg0 low[%c0, %c1] high[%c0, %c0] {
+ ^bb0(%arg1: index, %arg2: index):
+ tensor.yield %cst : f32
+ } : tensor<1x?xf32> to tensor<1x16xf32>
+ return %padded : tensor<1x16xf32>
+}
+// CHECK-LABEL: func @drop_unit_dim_mixed_static_dynamic
+// CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32
+// CHECK: %[[COLLAPSE:.+]] = tensor.collapse_shape
+// CHECK: %[[PADDED:.*]] = tensor.pad %[[COLLAPSE]] low[1] high[0] {
+// CHECK: ^bb0(%[[IDX:.*]]: index):
+// CHECK: tensor.yield %[[CST]] : f32
+// CHECK: } : tensor<?xf32> to tensor<16xf32>
+// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[PADDED]]
+// CHECK: return %[[EXPANDED]] : tensor<1x16xf32>
+
+// -----
+
+#map = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1 + d4, d2 + d5, d6)>
+#map1 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5, d6, d3)>
+#map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3)>
+module {
+ func.func @drop_unit_dim_corresponding_to_dynamic_dim(%arg0: tensor<1x?x?x1xf32>, %arg1: index) -> tensor<?x1x61x1xf32> {
+ %cst = arith.constant dense<1.000000e+00> : tensor<1x1x1x1xf32>
+ %0 = tensor.empty(%arg1) : tensor<?x1x61x1xf32>
+ %1 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"]} ins(%arg0, %cst : tensor<1x?x?x1xf32>, tensor<1x1x1x1xf32>) outs(%0 : tensor<?x1x61x1xf32>) {
+ ^bb0(%in: f32, %in_0: f32, %out: f32):
+ %2 = arith.mulf %in, %in_0 : f32
+ %3 = arith.addf %out, %2 : f32
+ linalg.yield %3 : f32
+ } -> tensor<?x1x61x1xf32>
+ return %1 : tensor<?x1x61x1xf32>
+ }
+}
// CHECK: #[[$MAP1:.+]] = affine_map<(d0) -> (0, d0)>
// CHECK: #[[$MAP2:.+]] = affine_map<(d0) -> ()>
@@ -1097,23 +1135,6 @@ func.func @drop_known_unit_constant_low_high(%arg0: tensor<1x383x128xf32>) -> te
// CHECK: return %[[VAL_14]] : tensor<?x1x61x1xf32>
// CHECK: }
-#map = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1 + d4, d2 + d5, d6)>
-#map1 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5, d6, d3)>
-#map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3)>
-module {
- func.func @drop_unit_dim_corresponding_to_dynamic_dim(%arg0: tensor<1x?x?x1xf32>, %arg1: index) -> tensor<?x1x61x1xf32> {
- %cst = arith.constant dense<1.000000e+00> : tensor<1x1x1x1xf32>
- %0 = tensor.empty(%arg1) : tensor<?x1x61x1xf32>
- %1 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"]} ins(%arg0, %cst : tensor<1x?x?x1xf32>, tensor<1x1x1x1xf32>) outs(%0 : tensor<?x1x61x1xf32>) {
- ^bb0(%in: f32, %in_0: f32, %out: f32):
- %2 = arith.mulf %in, %in_0 : f32
- %3 = arith.addf %out, %2 : f32
- linalg.yield %3 : f32
- } -> tensor<?x1x61x1xf32>
- return %1 : tensor<?x1x61x1xf32>
- }
-}
-
// -----
func.func @no_fold_empty_tensor_dim_out_of_bounds(%arg0: tensor<1x?x10xf32>) -> tensor<1x?xf32> {
|
|
@llvm/pr-subscribers-mlir Author: Daniel Garvey (dan-garvey) ChangesPreviously when dropping unit dim from a pad with mixed dynamic/static input/output shapes, the resulting shape would take on the Type of the input, resulting in invalid IR Full diff: https://github.com/llvm/llvm-project/pull/150706.diff 2 Files Affected:
diff --git a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
index e0062d15e61ca..7194662145bcc 100644
--- a/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
+++ b/mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
@@ -603,6 +603,7 @@ struct DropPadUnitDims : public OpRewritePattern<tensor::PadOp> {
}
ArrayRef<int64_t> sourceShape = padOp.getSourceType().getShape();
+ ArrayRef<int64_t> resultShape = padOp.getResultType().getShape();
int64_t padRank = sourceShape.size();
auto isStaticZero = [](OpFoldResult f) {
@@ -613,16 +614,18 @@ struct DropPadUnitDims : public OpRewritePattern<tensor::PadOp> {
allowedUnitDims.end());
llvm::SmallDenseSet<unsigned> unitDims;
SmallVector<int64_t> newShape;
+ SmallVector<int64_t> newResultShape;
SmallVector<OpFoldResult> newLowPad;
SmallVector<OpFoldResult> newHighPad;
- for (const auto [dim, size, low, high] :
- zip_equal(llvm::seq(static_cast<int64_t>(0), padRank), sourceShape,
- padOp.getMixedLowPad(), padOp.getMixedHighPad())) {
+ for (const auto [dim, size, outSize, low, high] : zip_equal(
+ llvm::seq(static_cast<int64_t>(0), padRank), sourceShape,
+ resultShape, padOp.getMixedLowPad(), padOp.getMixedHighPad())) {
if (unitDimsFilter.contains(dim) && size == 1 && isStaticZero(low) &&
isStaticZero(high)) {
unitDims.insert(dim);
} else {
newShape.push_back(size);
+ newResultShape.push_back(outSize);
newLowPad.push_back(low);
newHighPad.push_back(high);
}
@@ -652,8 +655,11 @@ struct DropPadUnitDims : public OpRewritePattern<tensor::PadOp> {
collapseValue(rewriter, padOp.getLoc(), padOp.getSource(), newShape,
reassociationMap, options.rankReductionStrategy);
+ auto resultType = RankedTensorType::get(
+ newResultShape, padOp.getResultType().getElementType()); //,
+ // padOp.getResultType().getEncoding());
auto newPadOp = rewriter.create<tensor::PadOp>(
- padOp.getLoc(), /*result=*/Type(), collapsedSource, newLowPad,
+ padOp.getLoc(), /*result=*/resultType, collapsedSource, newLowPad,
newHighPad, paddingVal, padOp.getNofold());
Value dest = padOp.getResult();
diff --git a/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir b/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
index a00c798197e5a..5df113b038469 100644
--- a/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
+++ b/mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
@@ -1076,6 +1076,44 @@ func.func @drop_known_unit_constant_low_high(%arg0: tensor<1x383x128xf32>) -> te
// -----
+func.func @drop_unit_dim_mixed_static_dynamic(%arg0: tensor<1x?xf32>) -> tensor<1x16xf32> {
+ %c0 = arith.constant 0 : index
+ %c1 = arith.constant 1 : index
+ %cst = arith.constant 0.000000e+00 : f32
+ %padded = tensor.pad %arg0 low[%c0, %c1] high[%c0, %c0] {
+ ^bb0(%arg1: index, %arg2: index):
+ tensor.yield %cst : f32
+ } : tensor<1x?xf32> to tensor<1x16xf32>
+ return %padded : tensor<1x16xf32>
+}
+// CHECK-LABEL: func @drop_unit_dim_mixed_static_dynamic
+// CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32
+// CHECK: %[[COLLAPSE:.+]] = tensor.collapse_shape
+// CHECK: %[[PADDED:.*]] = tensor.pad %[[COLLAPSE]] low[1] high[0] {
+// CHECK: ^bb0(%[[IDX:.*]]: index):
+// CHECK: tensor.yield %[[CST]] : f32
+// CHECK: } : tensor<?xf32> to tensor<16xf32>
+// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[PADDED]]
+// CHECK: return %[[EXPANDED]] : tensor<1x16xf32>
+
+// -----
+
+#map = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1 + d4, d2 + d5, d6)>
+#map1 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5, d6, d3)>
+#map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3)>
+module {
+ func.func @drop_unit_dim_corresponding_to_dynamic_dim(%arg0: tensor<1x?x?x1xf32>, %arg1: index) -> tensor<?x1x61x1xf32> {
+ %cst = arith.constant dense<1.000000e+00> : tensor<1x1x1x1xf32>
+ %0 = tensor.empty(%arg1) : tensor<?x1x61x1xf32>
+ %1 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"]} ins(%arg0, %cst : tensor<1x?x?x1xf32>, tensor<1x1x1x1xf32>) outs(%0 : tensor<?x1x61x1xf32>) {
+ ^bb0(%in: f32, %in_0: f32, %out: f32):
+ %2 = arith.mulf %in, %in_0 : f32
+ %3 = arith.addf %out, %2 : f32
+ linalg.yield %3 : f32
+ } -> tensor<?x1x61x1xf32>
+ return %1 : tensor<?x1x61x1xf32>
+ }
+}
// CHECK: #[[$MAP1:.+]] = affine_map<(d0) -> (0, d0)>
// CHECK: #[[$MAP2:.+]] = affine_map<(d0) -> ()>
@@ -1097,23 +1135,6 @@ func.func @drop_known_unit_constant_low_high(%arg0: tensor<1x383x128xf32>) -> te
// CHECK: return %[[VAL_14]] : tensor<?x1x61x1xf32>
// CHECK: }
-#map = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1 + d4, d2 + d5, d6)>
-#map1 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5, d6, d3)>
-#map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3)>
-module {
- func.func @drop_unit_dim_corresponding_to_dynamic_dim(%arg0: tensor<1x?x?x1xf32>, %arg1: index) -> tensor<?x1x61x1xf32> {
- %cst = arith.constant dense<1.000000e+00> : tensor<1x1x1x1xf32>
- %0 = tensor.empty(%arg1) : tensor<?x1x61x1xf32>
- %1 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"]} ins(%arg0, %cst : tensor<1x?x?x1xf32>, tensor<1x1x1x1xf32>) outs(%0 : tensor<?x1x61x1xf32>) {
- ^bb0(%in: f32, %in_0: f32, %out: f32):
- %2 = arith.mulf %in, %in_0 : f32
- %3 = arith.addf %out, %2 : f32
- linalg.yield %3 : f32
- } -> tensor<?x1x61x1xf32>
- return %1 : tensor<?x1x61x1xf32>
- }
-}
-
// -----
func.func @no_fold_empty_tensor_dim_out_of_bounds(%arg0: tensor<1x?x10xf32>) -> tensor<1x?xf32> {
|
|
(The change to the unrelated test was just to make the formatting match the other tests in the file) |
banach-space
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Hey Dan, long time no see!
Thanks for the contribution, LGTM % some nits.
Previously when dropping unit dim from a pad with mixed dynamic/static input/output shapes, the resulting shape would take on the Type of the input, resulting in invalid IR Additionally, fixed the formatting on the drop_unit_dim_corresponding_to_dynamic_dim test in order to match the rest of the tests in that file. Signed-off-by: dan <[email protected]>
a7b2f0d to
df03118
Compare
Thanks for the review! I hope we can have lunch again this year. If you feel I've adequately addressed your concerns I'd appreciate it if you also hit the merge button for me, as I do not have access yet. = ) |
Sure, though I am getting:
So, don't forget to follow https://llvm.org/docs/GitHub.html#before-your-first-pr :) |
That is a comprehensive doc. I un-privated my email, but I'm not certain if I need to recommit to get it to update. Does it still show the same |
No, no need for that :) |
Previously when dropping unit dim from a pad with mixed dynamic/static input/output shapes, the resulting shape would take on the Type of the input, resulting in invalid IR.
Also did some minor cleanup to the formatting of the
drop_unit_dim_corresponding_to_dynamic_dimtest to make it match the rest of the file.