Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 10 additions & 5 deletions mlir/lib/Dialect/Linalg/Transforms/DropUnitDims.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -637,6 +637,7 @@ struct DropPadUnitDims : public OpRewritePattern<tensor::PadOp> {
}

ArrayRef<int64_t> sourceShape = padOp.getSourceType().getShape();
ArrayRef<int64_t> resultShape = padOp.getResultType().getShape();
int64_t padRank = sourceShape.size();

auto isStaticZero = [](OpFoldResult f) {
Expand All @@ -647,16 +648,18 @@ struct DropPadUnitDims : public OpRewritePattern<tensor::PadOp> {
allowedUnitDims.end());
llvm::SmallDenseSet<unsigned> unitDims;
SmallVector<int64_t> newShape;
SmallVector<int64_t> newResultShape;
SmallVector<OpFoldResult> newLowPad;
SmallVector<OpFoldResult> newHighPad;
for (const auto [dim, size, low, high] :
zip_equal(llvm::seq(static_cast<int64_t>(0), padRank), sourceShape,
padOp.getMixedLowPad(), padOp.getMixedHighPad())) {
for (const auto [dim, size, outSize, low, high] : zip_equal(
llvm::seq(static_cast<int64_t>(0), padRank), sourceShape,
resultShape, padOp.getMixedLowPad(), padOp.getMixedHighPad())) {
if (unitDimsFilter.contains(dim) && size == 1 && isStaticZero(low) &&
isStaticZero(high)) {
unitDims.insert(dim);
} else {
newShape.push_back(size);
newResultShape.push_back(outSize);
newLowPad.push_back(low);
newHighPad.push_back(high);
}
Expand Down Expand Up @@ -686,8 +689,10 @@ struct DropPadUnitDims : public OpRewritePattern<tensor::PadOp> {
collapseValue(rewriter, padOp.getLoc(), padOp.getSource(), newShape,
reassociationMap, options.rankReductionStrategy);

auto newPadOp = tensor::PadOp::create(
rewriter, padOp.getLoc(), /*result=*/Type(), collapsedSource, newLowPad,
auto newResultType = RankedTensorType::get(
newResultShape, padOp.getResultType().getElementType());
auto newPadOp = rewriter.create<tensor::PadOp>(
padOp.getLoc(), /*result=*/newResultType, collapsedSource, newLowPad,
newHighPad, paddingVal, padOp.getNofold());

Value dest = padOp.getResult();
Expand Down
55 changes: 38 additions & 17 deletions mlir/test/Dialect/Linalg/drop-unit-extent-dims.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -1076,6 +1076,44 @@ func.func @drop_known_unit_constant_low_high(%arg0: tensor<1x383x128xf32>) -> te

// -----

func.func @drop_unit_dim_mixed_static_dynamic(%arg0: tensor<1x?xf32>) -> tensor<1x16xf32> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%cst = arith.constant 0.000000e+00 : f32
%padded = tensor.pad %arg0 low[%c0, %c1] high[%c0, %c0] {
^bb0(%arg1: index, %arg2: index):
tensor.yield %cst : f32
} : tensor<1x?xf32> to tensor<1x16xf32>
return %padded : tensor<1x16xf32>
}
// CHECK-LABEL: func @drop_unit_dim_mixed_static_dynamic
// CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[COLLAPSE:.+]] = tensor.collapse_shape %[[ARGS:.*]] : tensor<1x?xf32> into tensor<?xf32>
// CHECK: %[[PADDED:.*]] = tensor.pad %[[COLLAPSE]] low[1] high[0] {
// CHECK: ^bb0(%[[IDX:.*]]: index):
// CHECK: tensor.yield %[[CST]] : f32
// CHECK: } : tensor<?xf32> to tensor<16xf32>
// CHECK: %[[EXPANDED:.*]] = tensor.expand_shape %[[PADDED]] {{\[\[}}0, 1]] output_shape [1, 16] : tensor<16xf32> into tensor<1x16xf32>
// CHECK: return %[[EXPANDED]] : tensor<1x16xf32>

// -----

#map = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1 + d4, d2 + d5, d6)>
#map1 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5, d6, d3)>
#map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3)>
module {
func.func @drop_unit_dim_corresponding_to_dynamic_dim(%arg0: tensor<1x?x?x1xf32>, %arg1: index) -> tensor<?x1x61x1xf32> {
%cst = arith.constant dense<1.000000e+00> : tensor<1x1x1x1xf32>
%0 = tensor.empty(%arg1) : tensor<?x1x61x1xf32>
%1 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"]} ins(%arg0, %cst : tensor<1x?x?x1xf32>, tensor<1x1x1x1xf32>) outs(%0 : tensor<?x1x61x1xf32>) {
^bb0(%in: f32, %in_0: f32, %out: f32):
%2 = arith.mulf %in, %in_0 : f32
%3 = arith.addf %out, %2 : f32
linalg.yield %3 : f32
} -> tensor<?x1x61x1xf32>
return %1 : tensor<?x1x61x1xf32>
}
}
// CHECK: #[[$MAP1:.+]] = affine_map<(d0) -> (0, d0)>
// CHECK: #[[$MAP2:.+]] = affine_map<(d0) -> ()>

Expand All @@ -1097,23 +1135,6 @@ func.func @drop_known_unit_constant_low_high(%arg0: tensor<1x383x128xf32>) -> te
// CHECK: return %[[VAL_14]] : tensor<?x1x61x1xf32>
// CHECK: }

#map = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1 + d4, d2 + d5, d6)>
#map1 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5, d6, d3)>
#map2 = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3)>
module {
func.func @drop_unit_dim_corresponding_to_dynamic_dim(%arg0: tensor<1x?x?x1xf32>, %arg1: index) -> tensor<?x1x61x1xf32> {
%cst = arith.constant dense<1.000000e+00> : tensor<1x1x1x1xf32>
%0 = tensor.empty(%arg1) : tensor<?x1x61x1xf32>
%1 = linalg.generic {indexing_maps = [#map, #map1, #map2], iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"]} ins(%arg0, %cst : tensor<1x?x?x1xf32>, tensor<1x1x1x1xf32>) outs(%0 : tensor<?x1x61x1xf32>) {
^bb0(%in: f32, %in_0: f32, %out: f32):
%2 = arith.mulf %in, %in_0 : f32
%3 = arith.addf %out, %2 : f32
linalg.yield %3 : f32
} -> tensor<?x1x61x1xf32>
return %1 : tensor<?x1x61x1xf32>
}
}

// -----

func.func @no_fold_empty_tensor_dim_out_of_bounds(%arg0: tensor<1x?x10xf32>) -> tensor<1x?xf32> {
Expand Down