Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 31 additions & 1 deletion mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2292,9 +2292,39 @@ Speculation::Speculatability BroadcastOp::getSpeculatability() {
return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation()));
}

/// Fold back-to-back broadcasts together.
struct FoldBroadcasts : OpRewritePattern<linalg::BroadcastOp> {
using OpRewritePattern<linalg::BroadcastOp>::OpRewritePattern;

LogicalResult matchAndRewrite(linalg::BroadcastOp broadcastOp,
PatternRewriter &rewriter) const override {
auto defBroadcastOp = broadcastOp.getInput().getDefiningOp<BroadcastOp>();
if (!defBroadcastOp)
return failure();
ArrayRef<int64_t> defDimensions = defBroadcastOp.getDimensions();
ArrayRef<int64_t> dimensions = broadcastOp.getDimensions();
SmallVector<int64_t> foldedDims(dimensions);
Value init = broadcastOp.getInit();
int64_t initRank = cast<ShapedType>(init.getType()).getRank();
// Mapping from input dims to init dims.
SmallVector<int64_t> dimMap;
for (auto dim : llvm::seq<int64_t>(0, initRank)) {
if (!llvm::is_contained(dimensions, dim))
dimMap.push_back(dim);
}
for (auto dim : defDimensions)
foldedDims.push_back(dimMap[dim]);

llvm::sort(foldedDims);
rewriter.replaceOpWithNewOp<BroadcastOp>(
broadcastOp, defBroadcastOp.getInput(), init, foldedDims);
return success();
}
};

void BroadcastOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<EraseIdentityLinalgOp<BroadcastOp>>(context);
results.add<EraseIdentityLinalgOp<BroadcastOp>, FoldBroadcasts>(context);
}

//===----------------------------------------------------------------------===//
Expand Down
46 changes: 46 additions & 0 deletions mlir/test/Dialect/Linalg/canonicalize.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -1176,6 +1176,52 @@ func.func @broadcast_same_shape(%input: tensor<2x3xf32>, %init: tensor<2x3xf32>)

// -----

// CHECK-LABEL: @broadcast_broadcast_fold
// CHECK-SAME: %[[INPUT:[a-zA-Z0-9]+]]: tensor<2xf32>
// CHECK-SAME: %[[INIT1:[a-zA-Z0-9]+]]: tensor<2x3xf32>
// CHECK-SAME: %[[INIT2:[a-zA-Z0-9]+]]: tensor<2x3x4xf32>
// CHECK: %[[BROADCAST:.+]] = linalg.broadcast ins(%[[INPUT]] : tensor<2xf32>) outs(%[[INIT2]] : tensor<2x3x4xf32>) dimensions = [1, 2]
// CHECK-NOT: linalg.broadcast
// CHECK: return %[[BROADCAST]] : tensor<2x3x4xf32>
func.func @broadcast_broadcast_fold(%input: tensor<2xf32>,
%init1: tensor<2x3xf32>,
%init2: tensor<2x3x4xf32>) -> tensor<2x3x4xf32> {
%broadcast1 = linalg.broadcast
ins(%input: tensor<2xf32>)
outs(%init1: tensor<2x3xf32>)
dimensions = [1]
%broadcast2 = linalg.broadcast
ins(%broadcast1: tensor<2x3xf32>)
outs(%init2: tensor<2x3x4xf32>)
dimensions = [2]
func.return %broadcast2 : tensor<2x3x4xf32>
}

// -----

// CHECK-LABEL: @broadcast_broadcast_fold
// CHECK-SAME: %[[INPUT:[a-zA-Z0-9]+]]: tensor<2xf32>
// CHECK-SAME: %[[INIT1:[a-zA-Z0-9]+]]: tensor<2x4xf32>
// CHECK-SAME: %[[INIT2:[a-zA-Z0-9]+]]: tensor<2x3x4xf32>
// CHECK: %[[BROADCAST:.+]] = linalg.broadcast ins(%[[INPUT]] : tensor<2xf32>) outs(%[[INIT2]] : tensor<2x3x4xf32>) dimensions = [1, 2]
// CHECK-NOT: linalg.broadcast
// CHECK: return %[[BROADCAST]] : tensor<2x3x4xf32>
func.func @broadcast_broadcast_fold(%input: tensor<2xf32>,
%init1: tensor<2x4xf32>,
%init2: tensor<2x3x4xf32>) -> tensor<2x3x4xf32> {
%broadcast1 = linalg.broadcast
ins(%input: tensor<2xf32>)
outs(%init1: tensor<2x4xf32>)
dimensions = [1]
%broadcast2 = linalg.broadcast
ins(%broadcast1: tensor<2x4xf32>)
outs(%init2: tensor<2x3x4xf32>)
dimensions = [1]
func.return %broadcast2 : tensor<2x3x4xf32>
}

// -----

func.func @transpose_1d(%input: tensor<16xf32>,
%init: tensor<16xf32>) -> tensor<16xf32> {
%transpose = linalg.transpose
Expand Down