Python SDK for interacting with Luxonis HubAI - a platform for managing, converting, and deploying machine learning models for Luxonis OAK devices. If you want to convert models locally, check out modelconverter instead.
- Model Management: Create, list, update, and delete HubAI models
- Variant Management: Manage HubAI model variants and versions
- Instance Management: Create and manage HubAI model instances
- Model Conversion: Convert HubAI models to various formats including:
- RVC2
- RVC3
- RVC4
- Hailo
- CLI Tools: Command-line interface for all operations
- Type Safety: Full type hints for better developer experience
Install the package using pip:
pip install hubai-sdkOr install from source:
git clone https://github.com/luxonis/hubai-sdk.git
cd hubai-sdk
pip install -e .- Python 3.10 or higher
- Valid Luxonis HubAI API key - you can get it from HubAI Team Settings
- Visit HubAI Team Settings
- Generate or copy your API key
You can authenticate in several ways:
Option 1: Environment Variable
export HUBAI_API_KEY="your-api-key-here"This will store the API key in your environment variable and will be used by the SDK automatically. It is valid for the current session only.
Option 2: CLI Login
hubai loginThis will open a browser to generate a new API key and prompt you to enter it, which will be securely stored. Use hubai login --relogin to relogin with different API key or hubai logout to logout.
Option 3: Pass API Key Directly
from hubai_sdk import HubAIClient
client = HubAIClient(api_key="your-api-key-here")import os
from hubai_sdk import HubAIClient
# Initialize client
api_key = os.getenv("HUBAI_API_KEY")
client = HubAIClient(api_key=api_key)
# List all models
models = client.models.list_models()
print(f"Found {len(models)} models")
# Get a specific model
model = client.models.get_model(models[0].id)
print(f"Model: {model.name}")
# Convert a model to RVC2 format
response = client.convert.RVC2(
path="/path/to/your/model.onnx",
name="my-converted-model"
)
print(f"Converted model downloaded to: {response.downloaded_path}")The SDK provides four main services accessible through the HubAIClient:
You can copy slugs directly from the HubAI platform and use them as identifiers in the SDK for models and variants. For example like this:
hubai model info luxonis/yolov6-nano:r2-coco-512x384Manage ML models in HubAI.
# List models
models = client.models.list_models(
tasks=["OBJECT_DETECTION"],
is_public=True,
limit=10
)
# Get model by ID or slug (e.g., "luxonis/yolov6-nano:r2-coco-512x384")
model = client.models.get_model("model-id-or-slug")
# Create a new model
new_model = client.models.create_model(
name="my-model",
license_type="MIT",
is_public=False,
description="My awesome model",
tasks=["OBJECT_DETECTION"]
)
# Update a model
updated_model = client.models.update_model(
model_id,
license_type="Apache 2.0",
description="Updated description"
)
# Delete a model
client.models.delete_model(model_id)Manage model variants and versions.
# List variants (optionally filtered by model)
variants = client.variants.list_variants(model_id="model-id")
# Get variant by ID or slug (e.g., "luxonis/yolov6-nano:r2-coco-512x384")
variant = client.variants.get_variant("variant-id-or-slug")
# Create a new variant
new_variant = client.variants.create_variant(
name="my-variant",
model_id="model-id",
variant_version="1.0.0",
description="First version"
)
# Delete a variant
client.variants.delete_variant("variant-id")Manage model instances (specific configurations of variants).
# Create an instance
instance = client.instances.create_instance(
name="my-instance",
variant_id="variant-id",
model_type=ModelType.ONNX,
input_shape=[1, 3, 288, 512]
)
# Upload a file to instance
client.instances.upload_file("/path/to/nn_archive.tar.xz", instance.id)
# Get instance config
config = client.instances.get_config(instance.id)
# Download instance
downloaded_path = client.instances.download_instance(instance.id)
# Delete instance
client.instances.delete_instance(instance.id)Convert models to various formats.
Convert models for Luxonis OAK devices:
response = client.convert.RVC2(
path="/path/to/model.onnx",
name="converted-model",
compress_to_fp16=True,
number_of_shaves=8,
superblob=True
)Convert models to Qualcomm SNPE format:
response = client.convert.RVC4(
path="/path/to/model.onnx",
name="converted-model",
quantization_mode="INT8_STANDARD",
use_per_channel_quantization=True,
htp_socs=["sm8550"]
)Convert to any supported target:
from hubai_sdk.utils.types import Target
response = client.convert.convert(
target=Target.RVC2, # or Target.RVC4, Target.HAILO, etc.
path="/path/to/model.onnx",
name="converted-model",
quantization_mode="INT8_STANDARD",
input_shape=[1, 3, 288, 512]
)The SDK also provides a command-line interface:
# Login
hubai login
# List models
hubai model ls
# Get model info
hubai model info <model-id-or-slug>
# Create a model
hubai model create "my-model" --license-type MIT --tasks OBJECT_DETECTION
# Convert a model
hubai convert RVC2 --path /path/to/model.onnx --name "my-model"
# List variants
hubai variant ls
# List instances
hubai instance lsFor more CLI options, use the --help flag:
hubai --help
hubai model --help
hubai convert --helpSee the examples/ directory for more detailed usage examples:
examples/models.py: Model management operationsexamples/variants.py: Variant management operationsexamples/instances.py: Instance management and file operationsexamples/conversion/: Model conversion examples for different formats
BlobConverter is our previous library for converting models to the BLOB format usable with RVC2 and RVC3 devices. This library is being replaced by modelconverter and HubAI SDK, which eventually become the only supported way of converting models in the future.
blobconverter is still available and can be used for conversion, but we recommend using HubAI SDK for new projects. The API of HUBAI SDK is similar to that of blobconverter, but there are some differences in the parameters and the way the conversion is done.
blobconverter offers several functions for converting models from different frameworks, such as from_onnx, from_openvino, and from_tf. These functions are now replaced by the convert.RVC2 (or convert.RVC3) function in HubAI SDK, which takes a single argument path that specifies the path to the model file.
The following table shows the mapping between the parameters of blobconverter and HUBAI SDK. The parameters are grouped by their purpose. The first column shows the parameters of blobconverter, the second column shows the equivalent parameters in HubAI SDK, and the third column contains additional notes.
blobconverter |
HubAI SDK |
Notes |
|---|---|---|
model |
path |
The model file path. |
xml |
path |
The XML file path. Only for conversion from OpenVINO IR |
bin |
opts["input_bin"] |
The BIN file path. Only for conversion from OpenVINO IR. See the example. |
version |
tool_version |
The version of the conversion tool. |
data_type |
quantization_mode |
The quantization mode of the model. |
shaves |
number_of_shaves |
The number of shaves to use. |
optimizer_params |
mo_args |
The arguments to pass to the model optimizer. |
compile_params |
compile_tool_args |
The arguments to pass to the BLOB compiler. |
By default, HubAI SDK has superblob enabled which is only supported on DepthAI v3. If you want to convert a model to legacy RVC2 format (blob), you can pass superblob=False to the convert.RVC2 function.
Simple ONNX conversion using blobconverter
import blobconverter
blob = blobconverter.from_onnx(
model="resnet18.onnx",
)Equivalent code using HubAI SDK
response = client.convert.RVC2(
path="resnet18.onnx",
)
blob = response.downloaded_pathblobconverter example
import blobconverter
blob = blobconverter.from_openvino(
xml="resnet18.xml",
bin="resnet18.bin",
)HubAI SDK example
# When the XML and BIN files are at the same location,
# only the XML needs to be specified
response = client.convert.RVC2("resnet18.xml")
blob = response.downloaded_path
# Otherwise, the BIN file can be specified using
# the `opts` parameter
response = client.convert.RVC2(
path="resnet18.xml",
opts={
"input_bin": "resnet18.bin",
}
)
blob = response.downloaded_pathWarning
HubAI online conversion does not support conversion from frozen PB files, only TFLITE files are supported.
blobconverter
import blobconverter
blob = blobconverter.from_tf(
frozen_pb="resnet18.tflite",
)Equivalent code using HubAI SDK
response = client.convert.RVC2(
path="resnet18.tflite",
)
blob = response.downloaded_pathblobconverter.from_onnx with advanced parameters
import blobconverter
blob = blobconverter.from_onnx(
model="resnet18.onnx",
data_type="FP16",
version="2021.4",
shaves=6,
optimizer_params=[
"--mean_values=[127.5,127.5,127.5]",
"--scale_values=[255,255,255]",
],
compile_params=["-ip U8"],
)Equivalent code using HubAI SDK
response = client.convert.RVC2(
path="resnet18.onnx",
quantization_mode="FP16_STANDARD",
tool_version="2021.4.0",
number_of_shaves=6,
mo_args=[
"mean_values=[127.5,127.5,127.5]",
"scale_values=[255,255,255]"
],
compile_tool_args=["-ip", "U8"],
)
blob = response.downloaded_pathConversion from the Caffe framework is not supported.
See the All available parameters file for all available parameters during conversion.
git clone https://github.com/luxonis/hubai-sdk.git
cd hubai-sdk
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -e ".[dev]"Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
- Issues: GitHub Issues
- Email: support@luxonis.com
- Documentation: HubAI Platform
- Repository: https://github.com/luxonis/hubai-sdk
- HubAI Platform: https://hub.luxonis.com
- Luxonis: https://luxonis.com