Skip to content
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 19 additions & 3 deletions src/cpp/models/src/keypoint_detection.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@ void colArgMax(const cv::Mat& src,
DetectedKeypoints decode_simcc(const cv::Mat& simcc_x,
const cv::Mat& simcc_y,
const cv::Point2f& extra_scale = cv::Point2f(1.f, 1.f),
const cv::Point2i& extra_offset = cv::Point2f(0.f, 0.f),
bool apply_softmax = false,
float simcc_split_ratio = 2.0f) {
cv::Mat x_locs, max_val_x;
Expand All @@ -64,8 +65,9 @@ DetectedKeypoints decode_simcc(const cv::Mat& simcc_x,
std::vector<cv::Point2f> keypoints(x_locs.rows);
cv::Mat scores = cv::Mat::zeros(x_locs.rows, 1, CV_32F);
for (int i = 0; i < x_locs.rows; i++) {
keypoints[i] =
cv::Point2f(x_locs.at<int>(i) * extra_scale.x, y_locs.at<int>(i) * extra_scale.y) / simcc_split_ratio;
keypoints[i] = cv::Point2f((x_locs.at<int>(i) - extra_offset.x) * extra_scale.x,
(y_locs.at<int>(i) - extra_offset.y) * extra_scale.y) /
simcc_split_ratio;
scores.at<float>(i) = std::min(max_val_x.at<float>(i), max_val_y.at<float>(i));

if (scores.at<float>(i) <= 0.f) {
Expand Down Expand Up @@ -220,8 +222,22 @@ std::unique_ptr<ResultBase> KeypointDetectionModel::postprocess(InferenceResult&
float inverted_scale_x = static_cast<float>(image_data.inputImgWidth) / netInputWidth,
inverted_scale_y = static_cast<float>(image_data.inputImgHeight) / netInputHeight;

int pad_left = 0, pad_top = 0;
if (RESIZE_KEEP_ASPECT == resizeMode || RESIZE_KEEP_ASPECT_LETTERBOX == resizeMode) {
inverted_scale_x = inverted_scale_y = std::max(inverted_scale_x, inverted_scale_y);
if (RESIZE_KEEP_ASPECT_LETTERBOX == resizeMode) {
pad_left = (netInputWidth -
static_cast<int>(std::round(static_cast<float>(image_data.inputImgWidth) / inverted_scale_x))) /
2;
pad_top = (netInputHeight -
static_cast<int>(std::round(static_cast<float>(image_data.inputImgHeight) / inverted_scale_y))) /
2;
}
}

result->poses.emplace_back(
decode_simcc(pred_x_mat, pred_y_mat, {inverted_scale_x, inverted_scale_y}, apply_softmax));
decode_simcc(pred_x_mat, pred_y_mat, {inverted_scale_x, inverted_scale_y}, {pad_left, pad_top}, apply_softmax));

return std::unique_ptr<ResultBase>(result);
}

Expand Down
14 changes: 13 additions & 1 deletion src/python/model_api/models/keypoint_detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,19 @@ def postprocess(
orig_h, orig_w = meta["original_shape"][:2]
kp_scale_h = orig_h / self.h
kp_scale_w = orig_w / self.w
batch_keypoints = batch_keypoints.squeeze() * np.array([kp_scale_w, kp_scale_h])

batch_keypoints = batch_keypoints.squeeze()

if self.resize_type in ["fit_to_window", "fit_to_window_letterbox"]:
inverted_scale = max(kp_scale_h, kp_scale_w)
kp_scale_h = kp_scale_w = inverted_scale
if self.resize_type == "fit_to_window_letterbox":
pad_left = (self.w - round(orig_w / inverted_scale)) // 2
pad_top = (self.h - round(orig_h / inverted_scale)) // 2
batch_keypoints -= np.array([pad_left, pad_top])

batch_keypoints *= np.array([kp_scale_w, kp_scale_h])

return DetectedKeypoints(batch_keypoints, batch_scores.squeeze())

@classmethod
Expand Down