-
Notifications
You must be signed in to change notification settings - Fork 722
Add support for upsample_nearest2d op in the Arm backend #5746
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -37,5 +37,6 @@ | |
| op_tanh, | ||
| op_transpose, | ||
| op_unsqueeze, | ||
| op_upsample_nearest2d, | ||
| op_view, | ||
| ) | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,68 @@ | ||
| # Copyright 2024 Arm Limited and/or its affiliates. | ||
| # | ||
| # This source code is licensed under the BSD-style license found in the | ||
| # LICENSE file in the root directory of this source tree. | ||
| from typing import List | ||
|
|
||
| import serializer.tosa_serializer as ts | ||
| import torch | ||
| from executorch.backends.arm.operators.node_visitor import ( | ||
| NodeVisitor, | ||
| register_node_visitor, | ||
| ) | ||
| from executorch.backends.arm.tosa_mapping import TosaArg | ||
| from executorch.backends.arm.tosa_utils import get_resize_parameters, tosa_shape | ||
| from serializer.tosa_serializer import TosaOp | ||
|
|
||
| from tosa.ResizeMode import ResizeMode | ||
|
|
||
|
|
||
| @register_node_visitor | ||
| class UpsampleNearest2dVisitor(NodeVisitor): | ||
| target = "aten.upsample_nearest2d.vec" | ||
|
|
||
| def __init__(self, *args): | ||
| super().__init__(*args) | ||
|
|
||
| def define_node( | ||
| self, | ||
| node: torch.fx.Node, | ||
| tosa_graph: ts.TosaSerializer, | ||
| inputs: List[TosaArg], | ||
| output: TosaArg, | ||
| is_quant_node: bool, | ||
| ) -> None: | ||
| assert ( | ||
| inputs[0].shape is not None and output.shape is not None | ||
| ), "Only static shapes are supported" | ||
|
|
||
| # tosa_shape output is NHWC, take HW | ||
| input_size_yx = torch.tensor( | ||
| tosa_shape(inputs[0].shape, inputs[0].dim_order)[1:3] | ||
| ) | ||
| # Ignore scale and size parameters, directly use the output size as | ||
| # we only support static shapes currently | ||
| output_size_yx = torch.tensor(tosa_shape(output.shape, output.dim_order)[1:3]) | ||
|
|
||
| scale_n_yx, scale_d_yx, offset_yx, border_yx = get_resize_parameters( | ||
| input_size_yx, output_size_yx, ResizeMode.NEAREST, align_corners=True | ||
| ) | ||
|
|
||
| def in_int16_range(x): | ||
| return torch.all(x >= -(2**15)) and torch.all(x <= 2**15 - 1) | ||
|
|
||
| assert in_int16_range(scale_n_yx) | ||
| assert in_int16_range(scale_d_yx) | ||
| assert in_int16_range(border_yx) | ||
|
|
||
| attr = ts.TosaSerializerAttribute() | ||
| attr.ResizeAttribute( | ||
| scale=[scale_n_yx[0], scale_d_yx[0], scale_n_yx[1], scale_d_yx[1]], | ||
| offset=offset_yx.tolist(), | ||
| border=border_yx.tolist(), | ||
| mode=ResizeMode.NEAREST, | ||
| ) | ||
|
|
||
| tosa_graph.addOperator( | ||
| TosaOp.Op().RESIZE, [inputs[0].name], [output.name], attr | ||
| ) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
71 changes: 71 additions & 0 deletions
71
backends/arm/quantizer/quantization_annotation/upsample_nearest2d_annotator.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,71 @@ | ||
| # Copyright 2024 Arm Limited and/or its affiliates. | ||
| # | ||
| # This source code is licensed under the BSD-style license found in the | ||
| # LICENSE file in the root directory of this source tree. | ||
|
|
||
| import itertools | ||
| from typing import Callable, List, Optional | ||
|
|
||
| import torch | ||
| from executorch.backends.arm.quantizer.quantization_annotation import register_annotator | ||
| from executorch.backends.arm.quantizer.quantization_config import QuantizationConfig | ||
| from torch.ao.quantization.quantizer import ( | ||
| QuantizationAnnotation, | ||
| SharedQuantizationSpec, | ||
| ) | ||
| from torch.fx import Node | ||
| from torch.fx.passes.utils.source_matcher_utils import get_source_partitions | ||
|
|
||
|
|
||
| def _filter_upsample_nearest2d(filter_fn: Optional[Callable[[Node], bool]] = None): | ||
| def filter(node: Node): | ||
| is_upsample = node.target == torch.ops.aten.upsample_nearest2d.vec | ||
| if filter_fn is None: | ||
| return is_upsample | ||
| else: | ||
| return is_upsample and filter_fn(node) | ||
|
|
||
| return filter | ||
|
|
||
|
|
||
| @register_annotator("upsample_nearest2d") | ||
| def _annotate_upsample_nearest2d( | ||
| gm: torch.fx.GraphModule, | ||
| quantization_config: QuantizationConfig, | ||
| filter_fn: Optional[Callable[[Node], bool]] = None, | ||
| ) -> Optional[List[List[Node]]]: | ||
| module_partitions = get_source_partitions( | ||
| gm.graph, | ||
| [ | ||
| torch.nn.UpsamplingNearest2d, | ||
| torch.nn.Upsample, | ||
| torch.nn.functional.interpolate, | ||
| ], | ||
| _filter_upsample_nearest2d(filter_fn), | ||
| ) | ||
| upsample_partitions = list( | ||
| itertools.chain.from_iterable(module_partitions.values()) | ||
| ) | ||
| annotated_partitions = [] | ||
|
|
||
| for upsample_partition in upsample_partitions: | ||
| annotated_partitions.append(upsample_partition.nodes) | ||
|
|
||
| assert len(upsample_partition.nodes) == 1 | ||
| upsample_node = upsample_partition.nodes[0] | ||
|
|
||
| input_act = upsample_node.args[0] | ||
| assert isinstance(input_act, Node) | ||
|
|
||
| input_act_qspec = quantization_config.get_input_act_qspec() | ||
| output_act_qspec = SharedQuantizationSpec((input_act, upsample_node)) | ||
|
|
||
| upsample_node.meta["quantization_annotation"] = QuantizationAnnotation( | ||
| input_qspec_map={ | ||
| input_act: input_act_qspec, | ||
| }, | ||
| output_qspec=output_act_qspec, | ||
| _annotated=True, | ||
| ) | ||
|
|
||
| return annotated_partitions |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,165 @@ | ||
| # Copyright 2024 Arm Limited and/or its affiliates. | ||
| # All rights reserved. | ||
| # | ||
| # This source code is licensed under the BSD-style license found in the | ||
| # LICENSE file in the root directory of this source tree. | ||
|
|
||
| import unittest | ||
|
|
||
| from typing import Optional, Tuple | ||
|
|
||
| import torch | ||
| from executorch.backends.arm.test import common | ||
| from executorch.backends.arm.test.tester.arm_tester import ArmTester | ||
| from parameterized import parameterized | ||
|
|
||
|
|
||
| test_data_suite = [ | ||
| # (test_name, test_data, size, scale_factor, compare_outputs) | ||
| ("rand_double_scale", torch.rand(2, 4, 8, 3), None, 2.0, True), | ||
| ("rand_double_scale_one_dim", torch.rand(2, 4, 8, 3), None, (1.0, 2.0), True), | ||
| ("rand_double_size", torch.rand(2, 4, 8, 3), (16, 6), None, True), | ||
| ("rand_one_double_scale", torch.rand(2, 4, 1, 1), None, 2.0, True), | ||
| ("rand_one_double_size", torch.rand(2, 4, 1, 1), (2, 2), None, True), | ||
| ("rand_one_same_scale", torch.rand(2, 4, 1, 1), None, 1.0, True), | ||
| ("rand_one_same_size", torch.rand(2, 4, 1, 1), (1, 1), None, True), | ||
| # Can't compare outputs as the rounding when selecting the nearest pixel is | ||
| # different between PyTorch and TOSA. Just check the legalization went well. | ||
| # TODO Improve the test infrastructure to support more in depth verification | ||
| # of the TOSA legalization results. | ||
| ("rand_half_scale", torch.rand(2, 4, 8, 6), None, 0.5, False), | ||
| ("rand_half_size", torch.rand(2, 4, 8, 6), (4, 3), None, False), | ||
| ("rand_one_and_half_scale", torch.rand(2, 4, 8, 3), None, 1.5, False), | ||
| ("rand_one_and_half_size", torch.rand(2, 4, 8, 3), (12, 4), None, False), | ||
| ] | ||
|
|
||
|
|
||
| class TestUpsampleNearest2d(unittest.TestCase): | ||
| class UpsamplingNearest2d(torch.nn.Module): | ||
| def __init__( | ||
| self, | ||
| size: Optional[Tuple[int]], | ||
| scale_factor: Optional[float | Tuple[float]], | ||
| ): | ||
| super().__init__() | ||
| self.upsample = torch.nn.UpsamplingNearest2d( # noqa: TOR101 | ||
| size=size, scale_factor=scale_factor | ||
| ) | ||
|
|
||
| def forward(self, x): | ||
| return self.upsample(x) | ||
|
|
||
| class Upsample(torch.nn.Module): | ||
| def __init__( | ||
| self, | ||
| size: Optional[Tuple[int]], | ||
| scale_factor: Optional[float | Tuple[float]], | ||
| ): | ||
| super().__init__() | ||
| self.upsample = torch.nn.Upsample( | ||
| size=size, scale_factor=scale_factor, mode="nearest" | ||
| ) | ||
|
|
||
| def forward(self, x): | ||
| return self.upsample(x) | ||
|
|
||
| class Interpolate(torch.nn.Module): | ||
| def __init__( | ||
| self, | ||
| size: Optional[Tuple[int]], | ||
| scale_factor: Optional[float | Tuple[float]], | ||
| ): | ||
| super().__init__() | ||
| self.upsample = lambda x: torch.nn.functional.interpolate( | ||
| x, size=size, scale_factor=scale_factor, mode="nearest" | ||
| ) | ||
|
|
||
| def forward(self, x): | ||
| return self.upsample(x) | ||
|
|
||
| def _test_upsample_nearest_2d_tosa_MI_pipeline( | ||
| self, | ||
| module: torch.nn.Module, | ||
| test_data: Tuple[torch.tensor], | ||
| compare_outputs: bool, | ||
| ): | ||
| tester = ( | ||
| ArmTester( | ||
| module, | ||
| example_inputs=test_data, | ||
| compile_spec=common.get_tosa_compile_spec("TOSA-0.80.0+MI"), | ||
| ) | ||
| .export() | ||
| .check(["torch.ops.aten.upsample_nearest2d.vec"]) | ||
| .check_not(["torch.ops.quantized_decomposed"]) | ||
| .to_edge_transform_and_lower() | ||
| .check_not(["torch.ops.aten.upsample_nearest2d.vec"]) | ||
| .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) | ||
| .to_executorch() | ||
| ) | ||
|
|
||
| if compare_outputs: | ||
| tester.run_method_and_compare_outputs(inputs=test_data) | ||
|
|
||
| def _test_upsample_nearest_2d_tosa_BI_pipeline( | ||
| self, | ||
| module: torch.nn.Module, | ||
| test_data: Tuple[torch.tensor], | ||
| compare_outputs: bool, | ||
| ): | ||
| tester = ( | ||
| ArmTester( | ||
| module, | ||
| example_inputs=test_data, | ||
| compile_spec=common.get_tosa_compile_spec("TOSA-0.80.0+BI"), | ||
| ) | ||
| .quantize() | ||
| .export() | ||
| .check(["torch.ops.aten.upsample_nearest2d.vec"]) | ||
| .check(["torch.ops.quantized_decomposed"]) | ||
| .to_edge_transform_and_lower() | ||
| .check_not(["torch.ops.aten.upsample_nearest2d.vec"]) | ||
| .check_count({"torch.ops.higher_order.executorch_call_delegate": 1}) | ||
| .to_executorch() | ||
| ) | ||
|
|
||
| if compare_outputs: | ||
| tester.run_method_and_compare_outputs(inputs=test_data) | ||
|
|
||
| @parameterized.expand(test_data_suite) | ||
| def test_upsample_nearest_2d_tosa_MI( | ||
| self, | ||
| test_name: str, | ||
| test_data: torch.Tensor, | ||
| size: Optional[Tuple[int]], | ||
| scale_factor: Optional[float | Tuple[float]], | ||
| compare_outputs: bool, | ||
| ): | ||
| self._test_upsample_nearest_2d_tosa_MI_pipeline( | ||
| self.UpsamplingNearest2d(size, scale_factor), (test_data,), compare_outputs | ||
| ) | ||
| self._test_upsample_nearest_2d_tosa_MI_pipeline( | ||
| self.Upsample(size, scale_factor), (test_data,), compare_outputs | ||
| ) | ||
| self._test_upsample_nearest_2d_tosa_MI_pipeline( | ||
| self.Interpolate(size, scale_factor), (test_data,), compare_outputs | ||
| ) | ||
|
|
||
| @parameterized.expand(test_data_suite) | ||
| def test_upsample_nearest_2d_tosa_BI( | ||
| self, | ||
| test_name: str, | ||
| test_data: torch.Tensor, | ||
| size: Optional[Tuple[int]], | ||
| scale_factor: Optional[float | Tuple[float]], | ||
| compare_outputs: bool, | ||
| ): | ||
| self._test_upsample_nearest_2d_tosa_BI_pipeline( | ||
| self.UpsamplingNearest2d(size, scale_factor), (test_data,), compare_outputs | ||
| ) | ||
| self._test_upsample_nearest_2d_tosa_BI_pipeline( | ||
| self.Upsample(size, scale_factor), (test_data,), compare_outputs | ||
| ) | ||
| self._test_upsample_nearest_2d_tosa_BI_pipeline( | ||
| self.Interpolate(size, scale_factor), (test_data,), compare_outputs | ||
| ) | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
❤️ these test. Awesome!