Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions backends/xnnpack/operators/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,6 @@
op_ceiling,
op_clamp,
op_conv2d,
op_dequantize_per_tensor,
op_div,
op_dynamic_dequantize_ops,
op_dynamic_quantize_ops,
Expand All @@ -35,7 +34,7 @@
op_negate,
op_permute,
op_prelu,
op_quantize_per_tensor,
op_quant_dequant,
op_relu,
op_rsqrt,
op_sdpa,
Expand Down
70 changes: 0 additions & 70 deletions backends/xnnpack/operators/op_dequantize_per_tensor.py

This file was deleted.

198 changes: 198 additions & 0 deletions backends/xnnpack/operators/op_quant_dequant.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,198 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

from typing import Dict

import torch
from executorch.backends.xnnpack._passes.tag_implicit_q_dq_pass import (
TagImplicitQDqPass,
)
from executorch.backends.xnnpack.operators.node_visitor import (
NodeVisitor,
register_node_visitor,
)
from executorch.backends.xnnpack.operators.quant_params import QuantParams
from executorch.backends.xnnpack.serialization.xnnpack_graph_schema import (
XNNConvert,
XNNGraph,
XNode,
)
from executorch.backends.xnnpack.utils.quant_utils import (
is_per_channel_group,
validate_quant_scales,
validate_quant_zeropoints,
)
from executorch.backends.xnnpack.utils.utils import get_input_node, get_param_tensor


class OpStaticQDQNode(NodeVisitor):
def check_scales_zeropoints(self, node) -> None:
scales = node.args[1]
zero_points = node.args[2]
is_groupwise = is_per_channel_group(node)
dtype = node.args[-1]
if is_groupwise:
dtype = node.args[-3]

if isinstance(scales, torch.fx.Node):
scales = get_param_tensor(self.exported_program, scales)

if isinstance(zero_points, torch.fx.Node):
zero_points = get_param_tensor(self.exported_program, zero_points)

try:
validate_quant_scales(scales)
validate_quant_zeropoints(zero_points, dtype, is_groupwise)
except ValueError as e:
raise ValueError(
f"Invalid quantization scale or zero point for {node}: {e}"
)

def define_node(
self,
node: torch.fx.Node,
xnn_graph: XNNGraph,
vals_to_ids: Dict[torch.fx.Node, int],
debug_handle: int,
) -> None:
# check scales and zp are valid
self.check_scales_zeropoints(node)


@register_node_visitor
class OpDeQuantizePerTensor(OpStaticQDQNode):
"""
Dequantize Per Tensor Node visitor
"""

target = "quantized_decomposed.dequantize_per_tensor.default"

def __init__(self, *args) -> None:
super().__init__(*args)

def define_node(
self,
node: torch.fx.Node,
xnn_graph: XNNGraph,
vals_to_ids: Dict[torch.fx.Node, int],
debug_handle: int,
) -> None:
"""
We only define a node if it is not an implict dq node
"""
# check scales and zp are valid
super().define_node(node, xnn_graph, vals_to_ids, debug_handle)

if not TagImplicitQDqPass.is_tagged_as_implicit_q_dq(node):
dq_input = get_input_node(node, 0)
input_quant_params = QuantParams.from_q_dq_node(node)
# fp32 output
self.define_tensor(node, xnn_graph, vals_to_ids)
output_id = vals_to_ids[node]

# qint8 input
input_quant_params.is_output = False
self.define_tensor(
dq_input, xnn_graph, vals_to_ids, quant_params=input_quant_params
)
input_id = vals_to_ids[dq_input]

ser_node = XNode(
xnode_union=XNNConvert(input_id=input_id, output_id=output_id, flags=0),
debug_handle=debug_handle,
)
xnn_graph.xnodes.append(ser_node)
else:
# If this node was ignored, then its id is the same as its parent
dq_input = get_input_node(node, 0)
if dq_input in vals_to_ids:
vals_to_ids[node] = vals_to_ids[dq_input]


@register_node_visitor
class OpQuantizePerTensor(OpStaticQDQNode):
"""
Quantize Per Tensor Node visitor
"""

target = "quantized_decomposed.quantize_per_tensor.default"

def __init__(self, *args) -> None:
super().__init__(*args)

def define_node(
self,
node: torch.fx.Node,
xnn_graph: XNNGraph,
vals_to_ids: Dict[torch.fx.Node, int],
debug_handle: int,
) -> None:
"""
We only define a node if it is not an implict q node
"""
# check scales and zp are valid
super().define_node(node, xnn_graph, vals_to_ids, debug_handle)

q_input = get_input_node(node, 0)
if not TagImplicitQDqPass.is_tagged_as_implicit_q_dq(node):
input_quant_params = QuantParams.from_q_dq_node(node)
# fp32 input
self.define_tensor(q_input, xnn_graph, vals_to_ids)
input_id = vals_to_ids[q_input]

# qint8 output
input_quant_params.q_input = node
input_quant_params.is_input = False
self.define_tensor(
node, xnn_graph, vals_to_ids, quant_params=input_quant_params
)
output_id = vals_to_ids[node]

ser_node = XNode(
xnode_union=XNNConvert(input_id=input_id, output_id=output_id, flags=0),
debug_handle=debug_handle,
)
xnn_graph.xnodes.append(ser_node)
else:
# If this node was ignored, then its id is the same as its parents
if q_input in vals_to_ids:
vals_to_ids[node] = vals_to_ids[q_input]


@register_node_visitor
class OpDequantizePerChannelDefault(OpStaticQDQNode):
"""
do nothing if node is dequantize_per_channel.default
"""

target = "quantized_decomposed.dequantize_per_channel.default"


@register_node_visitor
class OpQuantizePerChannelDefault(OpStaticQDQNode):
"""
do nothing if node is quantize_per_channel.default
"""

target = "quantized_decomposed.quantize_per_channel.default"


@register_node_visitor
class OpQuantizePerChannelGroupDefault(OpStaticQDQNode):
"""
do nothing if node is quantize_per_channel_group.default
"""

target = "quantized_decomposed.quantize_per_channel_group.default"


@register_node_visitor
class OpDequantizePerChannelGroupDefault(OpStaticQDQNode):
"""
do nothing if node is dequantize_per_channel_group.default
"""

target = "quantized_decomposed.dequantize_per_channel_group.default"
70 changes: 0 additions & 70 deletions backends/xnnpack/operators/op_quantize_per_tensor.py

This file was deleted.

Loading
Loading