Skip to content
This repository was archived by the owner on Sep 10, 2025. It is now read-only.
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 18 additions & 8 deletions torchchat/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -535,18 +535,28 @@ def reset_caches(self):
class FlamingoModel(Model):
def forward(
self,
tokens: Tensor,
encoder_input: Optional[Dict[str, Tensor]] = None,
encoder_mask: Optional[Tensor] = None,
tokens: torch.Tensor,
*,
mask: Optional[torch.Tensor] = None,
encoder_input: Optional[Dict] = None,
encoder_mask: Optional[torch.Tensor] = None,
input_pos: Optional[torch.Tensor] = None,
) -> Tensor:
if encoder_input is None:
return self.model(tokens, encoder_mask=encoder_mask)
return self.model(
tokens, encoder_input=encoder_input, encoder_mask=encoder_mask
tokens,
mask=mask,
encoder_input=encoder_input,
encoder_mask=encoder_mask,
input_pos=input_pos,
)

def setup_caches(self, max_batch_size, dtype):
self.model.setup_caches(max_batch_size, dtype=dtype)
def setup_caches(self, batch_size, dtype, encoder_max_seq_len, decoder_max_seq_len):
self.model.setup_caches(
batch_size=batch_size,
dtype=dtype,
encoder_max_seq_len=encoder_max_seq_len,
decoder_max_seq_len=decoder_max_seq_len,
)

def reset_caches(self):
self.model.reset_caches()
Expand Down
Loading