-
Notifications
You must be signed in to change notification settings - Fork 0
Architecture
The Deep Learning Protocol is a hierarchical reasoning engine with built-in data protection. It processes information through multiple layers, each adding context and depth.
┌─────────────────────────────────────────────────────────┐
│ Program (Interactive Menu) │
│ • FAQ Display • Protocol Runner │
└────────────────────┬────────────────────────────────────┘
│
┌────────────────────▼────────────────────────────────────┐
│ DeepLearningProtocol (Orchestrator) │
│ SetAim() → ProcessAtDepth() → PursueAim() │
└────────────────────┬────────────────────────────────────┘
│
┌────────────────┼────────────────┐
│ │ │
┌───▼──┐ ┌─────▼────┐ ┌─────▼──┐
│ Aim │ │ Depth │ │ State │
│Store │ │Process │ │Manage │
└──────┘ └──────────┘ └────────┘
│ │ │
└────────────────┼────────────────┘
│
┌────────────────────▼────────────────────────────────────┐
│ AbstractCore (Processing Layer) │
│ ProcessCoreReasoning() — Wraps input in context │
└────────────────────┬────────────────────────────────────┘
│
┌────────────────────▼────────────────────────────────────┐
│ DataLossPrevention (Protection Layer) │
│ IsSuspiciousContent() • BackupState() │
│ Detects memes, binary data, large payloads │
└─────────────────────────────────────────────────────────┘
Responsibility: Manage user interaction and menu system
Key Methods:
-
Main()— Menu loop with 3 options (Protocol, FAQ, Exit) -
RunInteractiveProtocol()— Collect user input (question, goal, depth) -
DisplayFAQ()— Browse 10 FAQ Q&A pairs
Code Location: Program.cs, lines 1-160
Responsibility: Fundamental reasoning layer
Interface: None (standalone base class)
Key Method:
public virtual string ProcessCoreReasoning(string input)
{
return $"[Abstract Core] Deep abstract processing: {input}";
}Purpose: Wrap input in context layer (used recursively for depth processing)
Code Location: Program.cs, lines 162-172
Responsibility: State management and retrieval
Method Signatures:
string GetCurrentState();
void UpdateState(string newState);Used By: DeepLearningProtocol to track processing state
Code Location: Program.cs, lines 174-179
Responsibility: Goal-directed processing
Method Signatures:
void SetAim(string aim);
string PursueAim();Purpose:
-
SetAim()— Store user's goal -
PursueAim()— Retrieve aim with formatting
Code Location: Program.cs, lines 181-186
Responsibility: Hierarchical depth-based processing
Method Signatures:
string ProcessAtDepth(string input, int depth);Purpose: Recursively apply AbstractCore reasoning N times
Example:
Depth 1: [Abstract Core] input
Depth 2: [Abstract Core] [Abstract Core] input
Depth 3: [Abstract Core] [Abstract Core] [Abstract Core] input
Code Location: Program.cs, lines 188-193
Responsibility: Content protection and state preservation
Key Methods:
public bool IsSuspiciousContent(string content)
{
// Detects:
// - Image files (.png, .jpg, .jpeg)
// - Base64 encoded data
// - Keywords ("meme")
// - Large single-line payloads (>200 chars, no newlines)
return isSuspicious;
}
public void BackupState(string currentState)
{
// Saves to: ./.dlp_backups/{timestamp}.txt
// Preserves state history for recovery
}Protection Logic:
- On
UpdateState()call, DLP checks content - If suspicious, backs up current state
- Blocks update → state becomes
[DLP-BLOCKED] - Otherwise, allows normal update
Code Location: Program.cs, lines 195-240
Responsibility: Combine all interfaces and coordinate workflow
Inherits: IStateInterface, IAimInterface, IDepthInterface, AbstractCore
Key Methods:
- Stores goal
- Updates state:
"Aiming: {aim}" - Protected by DLP
- Recursively calls
ProcessCoreReasoning()depth times - Each call adds
[Abstract Core]layer
- Returns formatted string:
"[Aim Pursuit] {currentProcessing}" - Shows how aim influenced processing
-
Complete workflow:
-
SetAim(goal)— Store goal -
ProcessAtDepth(input, depth)— Apply depth processing -
PursueAim()— Return formatted result -
UpdateState()— Log completion
-
- Returns: Formatted result string
Code Location: Program.cs, lines 242-330
User Input:
Question: "How can I optimize my code?"
Goal: "Performance improvement"
Depth: 2
↓
Program.Main()
└─ RunInteractiveProtocol() collects input
└─ Calls: DeepLearningProtocol.ExecuteProtocol()
↓
DeepLearningProtocol.ExecuteProtocol()
1. SetAim("Performance improvement")
└─ UpdateState() → [DLP checks] → State updated
2. ProcessAtDepth("How can I optimize my code?", 2)
└─ Recursively call AbstractCore.ProcessCoreReasoning()
Iteration 1: "[Abstract Core] How can I optimize my code?"
Iteration 2: "[Abstract Core] [Abstract Core] How can I optimize my code?"
3. PursueAim()
└─ Returns: "[Aim Pursuit] {processed_result}"
4. UpdateState() → [DLP checks] → Final state saved
↓
Program.Main()
└─ Displays formatted result to user
└─ Shows state tracking
┌────────────────────────────────────────┐
│ DeepLearningProtocol │
│ (Implements all interfaces below) │
└────────────────────────────────────────┘
│ │ │
│ │ │
┌────▼─────┐ ┌───▼────┐ ┌────▼──────┐
│ IAimInterface │IStateInterface │IDepthInterface │
│ SetAim() │ │GetCurrentState() │ProcessAtDepth() │
│ PursueAim()│ │UpdateState() │ │
└───────────┘ └──────────┘ └─────────┘
│ │ │
└─────────────┼─────────────┘
│
Extends
│
┌─────────────▼──────────────┐
│ AbstractCore │
│ ProcessCoreReasoning() │
└────────────────────────────┘
Start
│
├─ Main Loop
│ ├─ Display Menu
│ └─ Get User Choice
│
├─ [Choice 1] Protocol
│ └─ RunInteractiveProtocol()
│ ├─ Prompt: Question
│ ├─ Prompt: Goal
│ ├─ Prompt: Depth (1-10)
│ └─ Call ExecuteProtocol()
│ ├─ SetAim()
│ ├─ ProcessAtDepth()
│ ├─ PursueAim()
│ └─ UpdateState()
│ └─ [DLP Protection]
│
├─ [Choice 2] FAQ
│ └─ DisplayFAQ()
│ ├─ Show Questions 1-10
│ └─ Display Selected Answer
│
└─ [Choice 3] Exit → End Program
- UI Layer — Program.cs Main/menu methods
- Business Layer — DeepLearningProtocol orchestration
- Core Layer — AbstractCore reasoning
- Protection Layer — DataLossPrevention
- Each interface has single responsibility:
-
IStateInterface— State only -
IAimInterface— Goal only -
IDepthInterface— Depth processing only
-
- DeepLearningProtocol inherits AbstractCore
- Implements multiple interfaces
- Composes with DataLossPrevention
- All state updates protected by DLP
- Backups created before blocking
- User can recover from
./.dlp_backups/
Initial State
│
├─ User runs protocol
│
└─ SetAim("goal")
└─ State: "Aiming: goal"
[DLP: Check] → Allowed or Blocked
└─ ProcessAtDepth()
└─ State: "Depth N processed"
[DLP: Check] → Allowed or Blocked
└─ Complete
└─ Final State: "Depth N processed"
or "[DLP-BLOCKED]" if suspicious
When DLP blocks an update:
Current State: "Aiming: goal"
│
├─ New Update: suspicious_content
│
├─ DLP.IsSuspiciousContent() → true
│
├─ DLP.BackupState("Aiming: goal")
│ └─ Saves to: ./.dlp_backups/2025-12-18_14-30-45-123.txt
│
└─ State → "[DLP-BLOCKED]"
// In Program.cs, extend AbstractCore:
public class SemanticLayer : AbstractCore
{
public override string ProcessCoreReasoning(string input)
{
var baseProcessing = base.ProcessCoreReasoning(input);
return $"[Semantic] {baseProcessing}";
}
}// In DataLossPrevention.IsSuspiciousContent():
if (content.Contains("forbiddenKeyword"))
{
return true; // Block this content
}public interface ICustomInterface
{
void CustomMethod();
}
// Implement in DeepLearningProtocol class-
ProcessAtDepth(input, depth)— O(depth) because each iteration adds one layer -
ExecuteProtocol()— O(depth) (dominated by ProcessAtDepth) -
IsSuspiciousContent()— O(n) where n = content length
- State storage — O(1) (single string)
- Backups — O(n × m) where n = number of backups, m = average backup size
- Depth processing — O(depth) call stack
- Limit depth — Keep depth ≤ 10 for reasonable performance
- DLP checks — Backups only on blocked content, not every update
- FAQ caching — Dictionary is static, no runtime overhead
- State Tests — Verify state get/update
- Aim Tests — Verify goal setting/pursuing
- Depth Tests — Verify recursive layering (theory with depths 0, 1, 2)
- Integration Tests — Full ExecuteProtocol workflow
See Testing Guide for details.
Next: Read DLP Guide to understand data protection in detail.