-
Notifications
You must be signed in to change notification settings - Fork 200
[Quantization] Support mixed-precision compression #1713
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from 8 commits
c18a19d
2f27693
6dba8ba
a19623d
208fa17
bd18f09
2cbffd0
4c2b5bc
83385ab
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,22 +1,70 @@ | ||
from typing import Optional | ||
from typing import List, Optional | ||
|
||
from compressed_tensors import CompressionFormat | ||
from compressed_tensors.config import SparsityStructure | ||
from compressed_tensors.quantization import QuantizationStrategy, QuantizationType | ||
from compressed_tensors.quantization import ( | ||
QuantizationArgs, | ||
QuantizationStrategy, | ||
QuantizationType, | ||
) | ||
from compressed_tensors.quantization.utils import is_module_quantized | ||
|
||
__all__ = ["infer_quantization_format"] | ||
__all__ = ["infer_per_module_quantization_format"] | ||
|
||
|
||
def infer_quantization_format( | ||
def _get_quant_method( | ||
input_args: QuantizationArgs, | ||
weight_args: QuantizationArgs, | ||
sparsity_structure: Optional[str] = None, | ||
): | ||
is_24_structure = ( | ||
SparsityStructure(sparsity_structure) == SparsityStructure.TWO_FOUR | ||
) | ||
dsikka marked this conversation as resolved.
Show resolved
Hide resolved
|
||
is_weight_only = weight_args is not None and input_args is None | ||
|
||
if weight_args.num_bits == 4 and weight_args.type == QuantizationType.FLOAT.value: | ||
return CompressionFormat.nvfp4_pack_quantized | ||
|
||
if is_weight_only: # w4a16 and w8a16 | ||
is_valid_pack = ( | ||
weight_args.num_bits in [4, 8] | ||
and weight_args.type == QuantizationType.INT.value | ||
) | ||
if not is_valid_pack: # packing only valid for int4 and int 8 | ||
return CompressionFormat.naive_quantized | ||
if is_24_structure: | ||
if ( | ||
weight_args.strategy is not QuantizationStrategy.CHANNEL.value | ||
and weight_args.strategy is not QuantizationStrategy.GROUP.value | ||
): | ||
# marlin24 kernel only applicable for channel/group quantization | ||
return CompressionFormat.pack_quantized | ||
return CompressionFormat.marlin_24 | ||
return CompressionFormat.pack_quantized | ||
|
||
else: # w8a8 float and int | ||
if ( | ||
weight_args.type == QuantizationType.FLOAT.value | ||
and weight_args.num_bits == 8 | ||
): | ||
return CompressionFormat.float_quantized | ||
if weight_args.type == QuantizationType.INT.value: | ||
return CompressionFormat.int_quantized | ||
|
||
return CompressionFormat.naive_quantized | ||
|
||
|
||
def infer_per_module_quantization_format( | ||
model, | ||
quantization_format: Optional[str] = None, | ||
save_compressed: bool = False, | ||
sparsity_structure: Optional[str] = None, | ||
) -> str: | ||
) -> Optional[List[str]]: | ||
""" | ||
Infers the quantization format for a model based on its state and provided | ||
compression arguments. | ||
compression arguments. Also updates thhe quantization_scheme.format value | ||
based on the inferred format. Returns the unique list of formats in the model | ||
or None if empty list | ||
The following table outlines the possible quantization and sparsity formats | ||
along with their corresponding compressor formats: | ||
|
@@ -27,6 +75,8 @@ def infer_quantization_format( | |
+---------------+----------+----------------------+---------------------+ | ||
| W8A8 - int | None | int_quantized | Dense | | ||
| W8A8 - float | None | float_quantized | Dense | | ||
| W4A16 - float | None | nvfp4_pack_quantized | Dense | | ||
| W4A4 - float | None | nvfp4_pack_quantized | Dense | | ||
| W4A16 - int | None | pack_quantized | Dense | | ||
| W8A16 - int | None | pack_quantized | Dense | | ||
| W8A16 - float | None | naive_quantized | Dense | | ||
|
@@ -44,74 +94,26 @@ def infer_quantization_format( | |
:param save_compressed: used to infer a quantization format if None is provided | ||
:return compression format appropriate for model | ||
""" | ||
if quantization_format is not None: | ||
return quantization_format | ||
|
||
weight_args, input_args = _get_unique_quant_args(model) | ||
if len(weight_args) <= 0: | ||
return None | ||
|
||
if save_compressed: | ||
is_24_structure = ( | ||
SparsityStructure(sparsity_structure) == SparsityStructure.TWO_FOUR | ||
) | ||
is_weight_only = len(input_args) == 0 and len(weight_args) > 0 | ||
|
||
if ( | ||
weight_args[0].num_bits == 4 | ||
and weight_args[0].type == QuantizationType.FLOAT.value | ||
): | ||
return CompressionFormat.nvfp4_pack_quantized | ||
|
||
if is_weight_only: # w4a16 and w8a16 | ||
is_valid_pack = all( | ||
weight_arg.num_bits in [4, 8] | ||
and weight_arg.type == QuantizationType.INT.value | ||
for weight_arg in weight_args | ||
) | ||
if not is_valid_pack: # packing only valid for int4 and int 8 | ||
return CompressionFormat.naive_quantized | ||
if is_24_structure: | ||
for arg in weight_args: | ||
if ( | ||
arg.strategy is not QuantizationStrategy.CHANNEL.value | ||
and arg.strategy is not QuantizationStrategy.GROUP.value | ||
): | ||
# marlin24 kernel only applicable for channel/group quantization | ||
return CompressionFormat.pack_quantized | ||
return CompressionFormat.marlin_24 | ||
return CompressionFormat.pack_quantized | ||
else: # w8a8 float and int | ||
if len(weight_args) == 1: | ||
if ( | ||
weight_args[0].type == QuantizationType.FLOAT.value | ||
and weight_args[0].num_bits == 8 | ||
): | ||
return CompressionFormat.float_quantized | ||
if weight_args[0].type == QuantizationType.INT.value: | ||
return CompressionFormat.int_quantized | ||
|
||
return CompressionFormat.naive_quantized | ||
else: | ||
# format will be inferred from config | ||
if not save_compressed: | ||
return None | ||
|
||
if quantization_format: | ||
return [quantization_format] | ||
|
||
def _get_unique_quant_args(model): | ||
""" | ||
Gets a list of all the unique quantization settings present in model | ||
""" | ||
quant_info_weight = [] | ||
quant_info_inputs = [] | ||
unique_formats = [] | ||
for submodule in model.modules(): | ||
if is_module_quantized(submodule): | ||
weight_scheme = submodule.quantization_scheme.weights | ||
input_scheme = submodule.quantization_scheme.input_activations | ||
if weight_scheme is not None: | ||
if weight_scheme not in quant_info_weight: | ||
quant_info_weight.append(weight_scheme) | ||
if input_scheme is not None: | ||
if input_scheme not in quant_info_inputs: | ||
quant_info_inputs.append(input_scheme) | ||
|
||
return quant_info_weight, quant_info_inputs | ||
if weight_scheme is None: | ||
continue # no weight quant - nothing to compress | ||
compression_format = _get_quant_method( | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Why are we not inferring from There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Rather than waiting until the end to do inference, why not infer a format at the source? class QuantizationScheme:
format: Optional[CompressionFormat] = None
@validate_field("format")
def validate_format(self, value):
if self.weights and self.input_activations ...
inferred_format = ...
if value is not None and value != inferred_format:
logger.warn_once("Consider using inferred scheme")
return value or inferred_format There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. LLM Compressor interprets the compression format at the time of the compression based on the quant args. This is our current lifecycle. We can still override using a global format. We can support overriding on a per module basis in a follow-up. The goal of this PR isn't to support per-module format overriding. The goal is to support the most common pathway to start, which is where we determine the format during compresssion time. |
||
input_scheme, weight_scheme, sparsity_structure | ||
) | ||
submodule.quantization_scheme.format = compression_format.value | ||
if compression_format not in unique_formats: | ||
unique_formats.append(compression_format) | ||
if len(unique_formats) > 0: | ||
return unique_formats | ||
return None |
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -19,7 +19,7 @@ | |
from llmcompressor.core import active_session | ||
from llmcompressor.pytorch.model_load.helpers import copy_python_files_from_model_cache | ||
from llmcompressor.transformers.compression.quantization_format import ( | ||
infer_quantization_format, | ||
infer_per_module_quantization_format, | ||
) | ||
from llmcompressor.transformers.compression.sparsity_metadata_config import ( | ||
SparsityConfigMetadata, | ||
|
@@ -228,13 +228,15 @@ def get_model_compressor( | |
SparsityConfigMetadata.infer_sparsity_structure(model) | ||
) | ||
|
||
quantization_format: Optional[CompressionFormat] = infer_quantization_format( | ||
model=model, | ||
quantization_format=quantization_format, | ||
save_compressed=save_compressed, | ||
sparsity_structure=None | ||
if sparsity_config is None | ||
else sparsity_config.sparsity_structure, | ||
quantization_format: Optional[CompressionFormat] = ( | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Type hint does not match return type of function |
||
infer_per_module_quantization_format( | ||
model=model, | ||
quantization_format=quantization_format, | ||
save_compressed=save_compressed, | ||
sparsity_structure=None | ||
if sparsity_config is None | ||
else sparsity_config.sparsity_structure, | ||
) | ||
) | ||
|
||
return ModelCompressor.from_pretrained_model( | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This function is called
_get_quant_method
, but returns a format