Skip to content
Merged
12 changes: 10 additions & 2 deletions .buildkite/test-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -165,10 +165,18 @@ steps:
- tests/v1/test_hybrid_lb_dp.py
- tests/v1/engine/test_engine_core_client.py
commands:
# test with tp=2 and external_dp=2
# test with torchrun tp=2 and external_dp=2
- torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
# test with tp=2 and pp=2
# test with torchrun tp=2 and pp=2
- PP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example.py
# test with torchrun tp=4 and dp=1
- TP_SIZE=4 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
# test with torchrun tp=2, pp=2 and dp=1
- PP_SIZE=2 TP_SIZE=2 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
# test with torchrun tp=1 and dp=4 with ep
- DP_SIZE=4 ENABLE_EP=1 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
# test with torchrun tp=2 and dp=2 with ep
- TP_SIZE=2 DP_SIZE=2 ENABLE_EP=1 torchrun --nproc-per-node=4 distributed/test_torchrun_example_moe.py
# test with internal dp
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
Expand Down
81 changes: 81 additions & 0 deletions examples/offline_inference/torchrun_dp_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
experimental support for data-parallel inference with torchrun
Note the data load balancing and distribution is done out of the vllm engine,
no internal lb supported in external_launcher mode.
"""

from vllm import LLM, SamplingParams

# Create prompts, the same across all ranks
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
] * 50

# Create sampling parameters, the same across all ranks
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

# Use `distributed_executor_backend="external_launcher"` so that
# this llm engine/instance only creates one worker.
# it is important to set an explicit seed to make sure that
# all ranks have the same random seed, so that sampling can be
# deterministic across ranks.
llm = LLM(
model="microsoft/Phi-mini-MoE-instruct",
tensor_parallel_size=1,
data_parallel_size=2,
pipeline_parallel_size=1,
enable_expert_parallel=False,
distributed_executor_backend="external_launcher",
max_model_len=4096,
gpu_memory_utilization=0.6,
seed=1,
)

dp_rank = llm.llm_engine.vllm_config.parallel_config.data_parallel_rank
dp_size = llm.llm_engine.vllm_config.parallel_config.data_parallel_size

prompts = [
f"{idx}.{prompt}" for idx, prompt in enumerate(prompts) if idx % dp_size == dp_rank
]

outputs = llm.generate(prompts, sampling_params)


# all ranks will have the same outputs
print("-" * 50)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}\n")
print("-" * 50)
"""
Further tips:

1. to communicate control messages across all ranks, use the cpu group,
a PyTorch ProcessGroup with GLOO backend.

```python
from vllm.distributed.parallel_state import get_world_group
cpu_group = get_world_group().cpu_group
torch_rank = dist.get_rank(group=cpu_group)
if torch_rank == 0:
# do something for rank 0, e.g. saving the results to disk.
```

2. to communicate data across all ranks, use the model's device group,
a PyTorch ProcessGroup with NCCL backend.
```python
from vllm.distributed.parallel_state import get_world_group
device_group = get_world_group().device_group
```

3. to access the model directly in every rank, use the following code:
```python
llm.llm_engine.model_executor.driver_worker.worker.model_runner.model
```
"""
81 changes: 81 additions & 0 deletions tests/distributed/test_torchrun_example_moe.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

# unit test for `examples/offline_inference/torchrun_example.py`
import os
import random

import torch.distributed as dist

from vllm import LLM, SamplingParams
from vllm.distributed.parallel_state import get_tp_group, get_world_group

dist.init_process_group(backend="gloo")

# Create prompts
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
] * 10
dp_size = int(os.getenv("DP_SIZE", "1"))
dp_rank = int(os.getenv("DP_RANK", "0"))

if dp_size > 1:
# distribute the prompts across the data parallel ranks
prompts = [
prompt for idx, prompt in enumerate(prompts)
if idx % dp_size == dp_rank
]

sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

# set different `gpu_memory_utilization` and `swap_space` for different ranks,
# to test if all ranks agree on the same kv cache configuration.
llm = LLM(model="microsoft/Phi-mini-MoE-instruct",
tensor_parallel_size=int(os.getenv("TP_SIZE", "1")),
pipeline_parallel_size=int(os.getenv("PP_SIZE", "1")),
enable_expert_parallel=int(os.getenv("ENABLE_EP", "0")) == 1,
distributed_executor_backend="external_launcher",
gpu_memory_utilization=random.uniform(0.7, 0.9),
swap_space=random.randint(1, 4),
seed=0)

outputs = llm.generate(prompts, sampling_params)

group = get_world_group() if dp_size == 1 else get_tp_group()
cpu_group = group.cpu_group
group_rank = dist.get_rank(group=cpu_group)


def test_consistent_across_ranks(obj):
if group_rank == 0:
dist.broadcast_object_list([obj], src=group.ranks[0], group=cpu_group)
else:
container = [None]
dist.broadcast_object_list(container,
src=group.ranks[0],
group=cpu_group)
assert container[0] == obj


test_consistent_across_ranks(
llm.llm_engine.vllm_config.cache_config.num_cpu_blocks)
test_consistent_across_ranks(
llm.llm_engine.vllm_config.cache_config.num_gpu_blocks)

# make sure we can access the model parameters from the calling process
# of the `LLM` instance.
params = list(llm.llm_engine.model_executor.driver_worker.worker.model_runner.
model.parameters())
test_consistent_across_ranks(len(params))

# all ranks should have the same outputs
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
test_consistent_across_ranks(prompt)
test_consistent_across_ranks(generated_text)
print(f"Rank {group_rank}, Prompt: {prompt!r}, "
f"Generated text: {generated_text!r}")
13 changes: 12 additions & 1 deletion vllm/config/parallel.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

import hashlib
import os
from dataclasses import field
from typing import TYPE_CHECKING, Any, Literal, Optional, Union

Expand Down Expand Up @@ -351,13 +352,24 @@ def __post_init__(self) -> None:
self.world_size = self.pipeline_parallel_size * \
self.tensor_parallel_size

if self.distributed_executor_backend == "external_launcher":
logger.info("Using external launcher for distributed inference.")
self.world_size *= self.data_parallel_size

if self.data_parallel_size_local > self.data_parallel_size:
raise ValueError(
f"data_parallel_size_local ({self.data_parallel_size_local}) "
f"must be <= data_parallel_size ({self.data_parallel_size})")

if self.data_parallel_size > 1 or self.data_parallel_size_local == 0:
# Data parallel was specified in the engine args.
if self.distributed_executor_backend == "external_launcher":
# For external launcher,
# we need to set the data parallel rank automatically
self.data_parallel_rank = int(os.environ["RANK"]) \
// (self.world_size // self.data_parallel_size)
logger.info("Set data_parallel_rank to %d automatically.",
self.data_parallel_rank)
if not self._data_parallel_master_port_list:
self._data_parallel_master_port_list = get_open_ports_list(5)
self.data_parallel_master_port = \
Expand All @@ -380,7 +392,6 @@ def __post_init__(self) -> None:
"be set when data_parallel_size > 1")

if self.distributed_executor_backend == "external_launcher":
import os
os.environ["VLLM_ENABLE_V1_MULTIPROCESSING"] = "0"
logger.info("Disabling V1 multiprocessing for external launcher.")

Expand Down
4 changes: 3 additions & 1 deletion vllm/distributed/parallel_state.py
Original file line number Diff line number Diff line change
Expand Up @@ -1032,7 +1032,9 @@ def init_distributed_environment(world_size: int = -1,
distributed_init_method, backend)
from vllm.config import get_current_vllm_config
config = get_current_vllm_config()
if config is not None and config.parallel_config.data_parallel_size > 1:
if config is not None and config.parallel_config.data_parallel_size > 1 \
and config.parallel_config.distributed_executor_backend \
!= "external_launcher":
parallel_config = config.parallel_config
# adjust to take into account data parallelism
# offset the rank by the data parallel rank
Expand Down
18 changes: 15 additions & 3 deletions vllm/v1/engine/llm_engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
import vllm.envs as envs
from vllm.config import ParallelConfig, VllmConfig
from vllm.distributed import stateless_destroy_torch_distributed_process_group
from vllm.distributed.parallel_state import get_dp_group
from vllm.engine.arg_utils import EngineArgs
from vllm.inputs import PromptType
from vllm.logger import init_logger
Expand Down Expand Up @@ -77,10 +78,15 @@ def __init__(
if self.log_stats:
self.stat_logger = PrometheusStatLogger(vllm_config)

executor_backend = (
self.vllm_config.parallel_config.distributed_executor_backend)
parallel_config = vllm_config.parallel_config
self.external_launcher_dp = (parallel_config.data_parallel_size > 1 and
executor_backend == "external_launcher")
# important: init dp group before init the engine_core
# In the decoupled engine case this is handled in EngineCoreProc.
parallel_config = vllm_config.parallel_config
if not multiprocess_mode and parallel_config.data_parallel_size > 1:
if not multiprocess_mode and parallel_config.data_parallel_size > 1 \
and not self.external_launcher_dp:
self.dp_group = parallel_config.stateless_init_dp_group()
else:
self.dp_group = None
Expand Down Expand Up @@ -120,6 +126,11 @@ def __init__(
# for v0 compatibility
self.model_executor = self.engine_core.engine_core.model_executor # type: ignore

if self.external_launcher_dp:
# If we use DP in external launcher mode, we reuse the
# existing DP group used for data communication.
self.dp_group = get_dp_group().cpu_group

# Don't keep the dummy data in memory
self.reset_mm_cache()

Expand Down Expand Up @@ -331,5 +342,6 @@ def apply_model(self, func: Callable[[nn.Module], _R]) -> list[_R]:
return self.collective_rpc("apply_model", args=(func, ))

def __del__(self):
if dp_group := getattr(self, "dp_group", None):
if dp_group := getattr(self, "dp_group",
None) and not self.external_launcher_dp:
stateless_destroy_torch_distributed_process_group(dp_group)