Skip to content

Complex Number Operations

brickpool edited this page Apr 28, 2020 · 4 revisions

Number Theory and Algebra

Source: HP-45 Applications Book (HP 00045-90320 Rev. B Reorder 00045-66001, Dec 1974)


Complex Number Operations

Note:

In this section, x and z are complex numbers (with x = a+𝒾b and z = u+𝒾v) and r and θ are used for polar decomposition of a complex number.

Complex add

Formula:

(a1 + 𝒾b1) + (a2 + 𝒾b2) = (a1 + a2) + 𝒾(b1 + b2) = u+𝒾v

Example:

(3 + 4𝒾) + (7.4 - 5.6𝒾) = 10.40 - 1.60𝒾

LINE DATA OPERATIONS DISPLAY REMARKS
1 x1 ENTER
2 x2 + z

Complex subtract

Formula:

(a1 + 𝒾b1) - (a2 + 𝒾b2) = (a1 - a2) + 𝒾(b1 - b2) = u+𝒾v

Example:

(3 + 4𝒾) - (7.4 - 5.6𝒾) = -4.4 + 9.6𝒾

LINE DATA OPERATIONS DISPLAY REMARKS
1 x1 ENTER
2 x2 - z

Complex multiply

Formula:

(a1 + 𝒾b1)(a2 + 𝒾b2) = (a1a2 - b1b2) + (a1b2 + a1b2) = u+𝒾v

Example:

(3 + 4𝒾)(7 - 2𝒾) = 29.00 + 22.00𝒾

LINE DATA OPERATIONS DISPLAY REMARKS
1 x1 ENTER
2 x2 × z

Multiplication of n complex numbers

Formula:

\prod_{k=1}^{n}( a_{k} + i b_{k} ) = \left (, \prod_{k=1}^{n} r_{k} \right ) e^{ i \sum_{k=1}^{n} \Theta_{k} } = u + i v

where ak + 𝒾bk = rk e𝒾θk .

Example:

(3 + 4𝒾) (7 - 2𝒾) (4.38 + 7𝒾) (12.3 - 5.44𝒾) = 1296.66 + 3828.90 𝒾

LINE DATA OPERATIONS DISPLAY REMARKS
1 x1 ENTER
2 xk × z Perform 2 for k=2,3, …, n

Complex divide

Formula:

(a1 + 𝒾b1) ÷ (a2 + 𝒾b2) = (r1/r2) e𝒾(θ1 - θ2) = u+𝒾v

where

a1 + 𝒾b1 = r1 e𝒾θ1
a2 + 𝒾b2 = r2 e𝒾θ2 ≠ 0

Example:

(3 + 4𝒾) ÷ (7 - 2𝒾) = 0.25 + 0.64𝒾

LINE DATA OPERATIONS DISPLAY REMARKS
1 x1 ENTER
2 x2 ÷ z

Complex reciprocal

Formula:

1 ÷ (a1 + 𝒾b1) = (a - 𝒾b) ÷ (a2 + b2) = u+𝒾v

Example:

1 ÷ (2 + 3𝒾) = 0.15 - 0.23𝒾

LINE DATA OPERATIONS DISPLAY REMARKS
1 x 1/x z

Complex absolute value

Formula:

|a + 𝒾b| = √(a2 + b2)

Example:

|3 + 4𝒾| = 5.00

LINE DATA OPERATIONS DISPLAY REMARKS
1 x +> ABS r

Complex square

Formula:

(a + 𝒾b)2 = (a2 - b2) + 𝒾(2ab) = u+𝒾v

Example:

(7 - 2𝒾)2 = 45.00 - 28.00𝒾

LINE DATA OPERATIONS DISPLAY REMARKS
1 x ENTER × z

Complex square root

Formula:

√(a + 𝒾b) = ± r½ e𝒾θ2

where

a+𝒾b = r e𝒾θ

Example:

√(7 + 6𝒾) = ±(2.85 - 1.05𝒾)

LINE DATA OPERATIONS DISPLAY REMARKS
1 x ENTER 0 . 5 z

Complex natural logarithm (base e)

Formula:

ln(a + 𝒾b) = ln √(a2 + b2) + 𝒾 atan(ba) = ln r + 𝒾θ = u+𝒾v (θ is in radians)

Example:

ln 𝒾 = 1.57𝒾

Note: a + 𝒾b = r e𝒾θ = r(cos θ+ 𝒾 sin θ)

LINE DATA OPERATIONS DISPLAY REMARKS
1 x +> LN z

Complex exponential

Formula:

ea + 𝒾b = ea e𝒾b = u+𝒾v

Example:

e1.57𝒾 = 1.00𝒾

LINE DATA OPERATIONS DISPLAY REMARKS
1 x +> z

Complex exponential (ta + 𝒾b)

Formula:

ta + 𝒾b = e(a + 𝒾b)ln t = u+𝒾v (t > 0)

Example:

23 + 4𝒾 = -7.46 + 2.89𝒾

LINE DATA OPERATIONS DISPLAY REMARKS
1 t ENTER
2 x z

Integral power of a complex number

Formula:

(a + 𝒾b)n = rn (cos nθ + 𝒾 sin nθ) = u+𝒾v

where r = √(a2 + b2), θ = atan(ba) and n is a positive integer.

Example:

(3 + 4𝒾)5 = -7.46 + 2.89𝒾

LINE DATA OPERATIONS DISPLAY REMARKS
1 x ENTER
2 n z

Integral roots of a complex number

Formula:

(a + 𝒾b)1n = r1n (cos (θ+360k)n + 𝒾 sin (θ+360k)n) = uk+𝒾vk

where n is a positive integer and k = 0,1, …, n -1. (θ is in degrees)

Example:

5 + 3𝒾 has three cube roots:
u0+𝒾v0 = 1.77 + 0.32𝒾
u1+𝒾v1 = -1.16 + 1.37𝒾
u2+𝒾v2 = -0.61 - 1.69𝒾

LINE DATA OPERATIONS DISPLAY REMARKS
1 x ENTER
2 n 1/x z0 k = 0
3 +> LASTx 2 × <+
4 π × \im × +>
5 × z1 k = 1
6 +> LASTx × zk Perform 6 for k=2,3, …, n-1

Complex number to a complex power

Formula:

(a1 + 𝒾b1)(a2 + 𝒾b2) = e(a2 + 𝒾b2)ln(a1 + 𝒾b1) = u+𝒾v

where a1 + 𝒾b1 ≠ 0

Example:

(1 + 𝒾)(2 - 𝒾) = 1.49 + 4.13𝒾

LINE DATA OPERATIONS DISPLAY REMARKS
1 x1 ENTER
2 x2 z

Complex root of a complex number

Formula:

(a1 + 𝒾b1)1(a2 + 𝒾b2) = e[ln(a1 + 𝒾b1) / (a2 + 𝒾b2)] = u+𝒾v

where a1 + 𝒾b1 ≠ 0

Example:

Find the (2 - 𝒾)th root of 1.49 + 4.13𝒾

Answer:

1.00 + 1.00𝒾

LINE DATA OPERATIONS DISPLAY REMARKS
1 x1 ENTER
2 x2 1/x z

Logarithm of a complex number to a complex base

Formula:

log(a1 + 𝒾b1)(a2 + 𝒾b2) = ln(a2 + 𝒾b2) ÷ ln(a1 + 𝒾b1) = u+𝒾v

where a1 + 𝒾b1 ≠ 0

Example:

log(1 + 𝒾)(1.49 + 4.13𝒾) = 2.00 - 1.00𝒾

LINE DATA OPERATIONS DISPLAY REMARKS
1 x1 +> LN
2 x2 +> LN x<>y ÷ z

Clone this wiki locally