-
Notifications
You must be signed in to change notification settings - Fork 0
Complex Number Operations
-
Complex Number Operations
- Complex add
- Complex subtract
- Complex multiply
- Multiplication of n complex numbers
- Complex divide
- Complex reciprocal
- Complex absolute value
- Complex square
- Complex square root
- Complex natural logarithm (base e)
- Complex exponential
- Complex exponential (ta + 𝒾b)
- Integral power of a complex number
- Integral roots of a complex number
- Complex number to a complex power
- Complex root of a complex number
- Logarithm of a complex number to a complex base
Source: HP-45 Applications Book (HP 00045-90320 Rev. B Reorder 00045-66001, Dec 1974)
Note:
In this section, x and z are complex numbers (with x = a+𝒾b and z = u+𝒾v) and r and θ are used for polar decomposition of a complex number.
Formula:
(a1 + 𝒾b1) + (a2 + 𝒾b2) = (a1 + a2) + 𝒾(b1 + b2) = u+𝒾v
Example:
(3 + 4𝒾) + (7.4 - 5.6𝒾) = 10.40 - 1.60𝒾
| LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
|---|---|---|---|---|
| 1 | x1 | ENTER |
||
| 2 | x2 | + |
z |
Formula:
(a1 + 𝒾b1) - (a2 + 𝒾b2) = (a1 - a2) + 𝒾(b1 - b2) = u+𝒾v
Example:
(3 + 4𝒾) - (7.4 - 5.6𝒾) = -4.4 + 9.6𝒾
| LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
|---|---|---|---|---|
| 1 | x1 | ENTER |
||
| 2 | x2 | - |
z |
Formula:
(a1 + 𝒾b1)(a2 + 𝒾b2) = (a1a2 - b1b2) + (a1b2 + a1b2) = u+𝒾v
Example:
(3 + 4𝒾)(7 - 2𝒾) = 29.00 + 22.00𝒾
| LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
|---|---|---|---|---|
| 1 | x1 | ENTER |
||
| 2 | x2 | × |
z |
Formula:
where ak + 𝒾bk = rk e𝒾θk .
Example:
(3 + 4𝒾) (7 - 2𝒾) (4.38 + 7𝒾) (12.3 - 5.44𝒾) = 1296.66 + 3828.90 𝒾
| LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
|---|---|---|---|---|
| 1 | x1 | ENTER |
||
| 2 | xk | × |
z | Perform 2 for k=2,3, …, n |
Formula:
(a1 + 𝒾b1) ÷ (a2 + 𝒾b2) = (r1/r2) e𝒾(θ1 - θ2) = u+𝒾v
where
a1 + 𝒾b1 = r1 e𝒾θ1
a2 + 𝒾b2 = r2 e𝒾θ2 ≠ 0
Example:
(3 + 4𝒾) ÷ (7 - 2𝒾) = 0.25 + 0.64𝒾
| LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
|---|---|---|---|---|
| 1 | x1 | ENTER |
||
| 2 | x2 | ÷ |
z |
Formula:
1 ÷ (a1 + 𝒾b1) = (a - 𝒾b) ÷ (a2 + b2) = u+𝒾v
Example:
1 ÷ (2 + 3𝒾) = 0.15 - 0.23𝒾
| LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
|---|---|---|---|---|
| 1 | x | 1/x |
z |
Formula:
|a + 𝒾b| = √(a2 + b2)
Example:
|3 + 4𝒾| = 5.00
| LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
|---|---|---|---|---|
| 1 | x |
ABS
|
r |
Formula:
(a + 𝒾b)2 = (a2 - b2) + 𝒾(2ab) = u+𝒾v
Example:
(7 - 2𝒾)2 = 45.00 - 28.00𝒾
| LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
|---|---|---|---|---|
| 1 | x |
ENTER ×
|
z |
Formula:
√(a + 𝒾b) = ± r½ e𝒾θ⁄2
where
a+𝒾b = r e𝒾θ
Example:
√(7 + 6𝒾) = ±(2.85 - 1.05𝒾)
| LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
|---|---|---|---|---|
| 1 | x |
ENTER 0 . 5 y˟
|
z |
Formula:
ln(a + 𝒾b) = ln √(a2 + b2) + 𝒾 atan(b⁄a) = ln r + 𝒾θ = u+𝒾v (θ is in radians)
Example:
ln 𝒾 = 1.57𝒾
Note: a + 𝒾b = r e𝒾θ = r(cos θ+ 𝒾 sin θ)
| LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
|---|---|---|---|---|
| 1 | x |
LN
|
z |
Formula:
ea + 𝒾b = ea e𝒾b = u+𝒾v
Example:
e1.57𝒾 = 1.00𝒾
| LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
|---|---|---|---|---|
| 1 | x |
e˟
|
z |
Formula:
ta + 𝒾b = e(a + 𝒾b)ln t = u+𝒾v (t > 0)
Example:
23 + 4𝒾 = -7.46 + 2.89𝒾
| LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
|---|---|---|---|---|
| 1 | t | ENTER |
||
| 2 | x | y˟ |
z |
Formula:
(a + 𝒾b)n = rn (cos nθ + 𝒾 sin nθ) = u+𝒾v
where r = √(a2 + b2), θ = atan(b⁄a) and n is a positive integer.
Example:
(3 + 4𝒾)5 = -7.46 + 2.89𝒾
| LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
|---|---|---|---|---|
| 1 | x | ENTER |
||
| 2 | n | y˟ |
z |
Formula:
(a + 𝒾b)1⁄n = r1⁄n (cos (θ+360k)⁄n + 𝒾 sin (θ+360k)⁄n) = uk+𝒾vk
where n is a positive integer and k = 0,1, …, n -1. (θ is in degrees)
Example:
5 + 3𝒾 has three cube roots:
u0+𝒾v0 = 1.77 + 0.32𝒾
u1+𝒾v1 = -1.16 + 1.37𝒾
u2+𝒾v2 = -0.61 - 1.69𝒾
| LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
|---|---|---|---|---|
| 1 | x | ENTER |
||
| 2 | n |
1/x y˟
|
z0 | k = 0 |
| 3 |
LASTx 2 ×
|
|||
| 4 |
π × ×
|
|||
| 5 |
e˟ ×
|
z1 | k = 1 | |
| 6 |
LASTx ×
|
zk | Perform 6 for k=2,3, …, n-1 |
Formula:
(a1 + 𝒾b1)(a2 + 𝒾b2) = e(a2 + 𝒾b2)ln(a1 + 𝒾b1) = u+𝒾v
where a1 + 𝒾b1 ≠ 0
Example:
(1 + 𝒾)(2 - 𝒾) = 1.49 + 4.13𝒾
| LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
|---|---|---|---|---|
| 1 | x1 | ENTER |
||
| 2 | x2 | y˟ |
z |
Formula:
(a1 + 𝒾b1)1⁄(a2 + 𝒾b2) = e[ln(a1 + 𝒾b1) / (a2 + 𝒾b2)] = u+𝒾v
where a1 + 𝒾b1 ≠ 0
Example:
Find the (2 - 𝒾)th root of 1.49 + 4.13𝒾
Answer:
1.00 + 1.00𝒾
| LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
|---|---|---|---|---|
| 1 | x1 | ENTER |
||
| 2 | x2 |
1/x y˟
|
z |
Formula:
log(a1 + 𝒾b1)(a2 + 𝒾b2) = ln(a2 + 𝒾b2) ÷ ln(a1 + 𝒾b1) = u+𝒾v
where a1 + 𝒾b1 ≠ 0
Example:
log(1 + 𝒾)(1.49 + 4.13𝒾) = 2.00 - 1.00𝒾
| LINE | DATA | OPERATIONS | DISPLAY | REMARKS |
|---|---|---|---|---|
| 1 | x1 |
LN
|
||
| 2 | x2 |
LN x<>y ÷
|
z |
- HP-35s Startpage
- Assembler
- Emulator
- Applications Book (en|de)
- Introduction
- Machine Related Operations
- Number Theory and Algebra
- Geometry and Trigonometry
- Miscellany
- Appendix